Part:BBa_K5115067
mineral, F module
Introduction
This part is made up of BBa_K5115063(hox and hyp, with EP targeted hoxF) and BBa_K5115060(ribozyme+RBS+cso without csoS3)+stem-loop). The hoxs and hyps make up the Ni-Fe hydrogenase and the csos make up the carboxysome. In our design, the hydrogenase is encapsulated into the carboxysome by EP. All the subunits of the proteins constructed into our ribozyme-assisted polycistronic co-expression system. We introduced this ribozyme-assisted polycistronic co-expression system from 2022. By inserting ribozyme sequences between CDSs in a polycistron, the RNA sequences of Twister ribozyme conduct self-cleaving, and the polycistronic mRNA transcript is thus co-transcriptionally converted into individual mono-cistrons in vivo.
With this design, we achieve co-expression of hydrogenase, carboxysome and EP at similar level. These parts make up the Ni-Fe hydrogenase with the hoxF targeted by EP and carboxysome. The former will be directed into the latter, creating a stable environment for the Ni-Fe hydrogenase to work in.
The Ni-Fe hydrogenase we use is an enzyme that functions in vivo bidirectionally for NAD+ reduction and NADH oxidation coupled to H2 uptake and H2 production, respectively. [1] In our design, the Ni-Fe hydrogenase works mainly to restore the nickel to a zero valence, which can help reduce nickel toxicity and collect nickel particles. The Ni-Fe hydrogenase is made up of six major and three auxiliary subunits. The former includes hoxF, hoxU, hoxY, hoxH, hoxW and hoxI, while the latter includes hypA, hypB and hypF.
The hoxF and the hoxU form the module of NADH dehydrogenase. The hoxF is a hydrogenase subunit responsible for electron transport. The most important group in hoxF is FMN-b, which has the ability of switching electron. Under anaerobic conditions, NADH is oxidized to NAD+ on the surface of hoxF subunit. In the meanwhile, the electrons generated in this reaction travel through a series of processes to the hoxH, completing the reduction of the hydrogen ion. Under aerobic conditions, NAD+ is reduced to NADH on the surface of the hoxF subunit. The electron transferring is contrary to former. [2] The hoxU houses a 2Fe-2S cluster and is responsible for the role of conducting electrons between hoxH and hoxF. [3]
The hoxY and the hoxH form the module of catalytic center.The hoxY houses a [4Fe-4S] cluster of the site, and an FMN group (FMN-a) near the Ni-Fe site in the hoxH. It is also responsible for the role of conducting electrons between hoxH and hoxF.[4] The most important site in hoxH is the [NiFe] -hydrogenase active site, which is composed of Ni and Fe particles coordinated with cysteine residues, cyanide and carbon monoxide. [5] It is the most central component of our intracellular conversion of nickel ions. On its surface, oxidation and reduction of hydrogen gas happens alternately according to different oxygen status.
The rest of the subunits may work together to ensure that the hydrogenase can assemble and function well. It's worth noting that hypA and hypB can cooperate to precisely guide and insert the nickel ions into the hydrogenase catalytic center.[6]
Through the synergistic integration of the hox and hyp subunits, our system effectively enhances hydrogen production and enables the reduction of nickel ions into nanoparticles, thereby maximizing the efficiency of nickel recovery from industrial wastewater.
The EP sequence encodes an endogenous encapsulation peptide, which plays a crucial role in directing external proteins into bacterial microcompartments like carboxysomes. EP supports the functional assembly of the carboxysome, enhancing the stability and activity of encapsulated enzymes. This targeting mechanism is essential for protein encapsulation within these structures, aiding in the assembly of a functional, proteinaceous shell that sequesters enzymes or other proteins, ensuring efficient catalysis or protection from environmental stress[7].
The csoS operon, originating from the Halothiobacillus neapolitanus, encodes a series of proteins essential for the assembly of α-carboxysomes, a type of microcompartment that facilitates the sequestration and concentration of enzymes involved in carbon fixation, particularly ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco)[8]. In literature, α-carboxysomes have been extensively studied and successfully utilized in Escherichia coli for enhancing carbon fixation efficiency and optimizing metabolic pathways. The csoS operon includes key structural proteins including csoS4B, csoS1C, csoS1A, csoS1B, csoS1D, csoS4A, and CsoS2, which play crucial roles in forming the shell and encapsulating cargo enzymes, including those required for hydrogen production. The operon serves as a model for synthetic biology applications, particularly in constructing nanoreactors capable of enhancing catalytic functions through encapsulation of heterologous enzymes. The successful expression of this operon in E. coli demonstrates its potential for industrial and biotechnological applications, enabling the creation of efficient microbial systems for sustainable bioprocessing.[9]
Usage and Biology
The F module harnesses the collaborative power of hydrogenase enzymes, carboxysome compartments, and encapsulation peptides to drive an innovative approach for nickel reduction in E. coli. This integrated module not only advances the biotechnological potential of engineered microorganisms but also addresses environmental concerns related to nickel contamination by converting harmful ions into less toxic nanoparticles.
Characterization
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 208
Illegal NotI site found at 5126 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 366
Illegal BglII site found at 5743
Illegal BglII site found at 5821
Illegal BglII site found at 14467
Illegal BglII site found at 15285
Illegal BglII site found at 15578
Illegal BamHI site found at 6214
Illegal XhoI site found at 5751
Illegal XhoI site found at 5943
Illegal XhoI site found at 6421
Illegal XhoI site found at 8660
Illegal XhoI site found at 10489
Illegal XhoI site found at 11651
Illegal XhoI site found at 13490 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 6514
Illegal NgoMIV site found at 7194
Illegal NgoMIV site found at 9801
Illegal NgoMIV site found at 9908
Illegal NgoMIV site found at 10178
Illegal NgoMIV site found at 11024
Illegal NgoMIV site found at 11256
Illegal AgeI site found at 874
Illegal AgeI site found at 1825
Illegal AgeI site found at 2506
Illegal AgeI site found at 3460
Illegal AgeI site found at 5704
Illegal AgeI site found at 10976
Illegal AgeI site found at 16361 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 5525
Illegal BsaI site found at 5687
Illegal BsaI site found at 8314
Illegal BsaI.rc site found at 14515
Illegal BsaI.rc site found at 15019
Illegal SapI site found at 266
Illegal SapI.rc site found at 5636
References
- ↑ Teramoto, H., Shimizu, T., Suda, M., & Inui, M. (2022). Hydrogen production based on the heterologous expression of NAD+-reducing [NiFe]-hydrogenase from Cupriavidus necator in different genetic backgrounds of Escherichia coli strains. International Journal of Hydrogen Energy, 47(52), 22010–22021.
- ↑ Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
- ↑ Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
- ↑ Löscher, S., Burgdorf, T., Zebger, I., Hildebrandt, P., Dau, H., Friedrich, B., & Haumann, M. (2006). Bias from H2 Cleavage to Production and Coordination Changes at the Ni−Fe Active Site in the NAD+-Reducing Hydrogenase from Ralstonia eutropha. Biochemistry, 45(38), 11658–11665.
- ↑ Chan, K.-H., Lee, K.-M., & Wong, K.-B. (2012). Interaction between Hydrogenase Maturation Factors HypA and HypB Is Required for [NiFe]-Hydrogenase Maturation. PLOS ONE, 7(2), e32592.
- ↑ Anne K. Jones, Oliver Lenz, Angelika Strack, Thorsten Buhrke, and, & Friedrich*, B. (2004, October 2). NiFe Hydrogenase Active Site Biosynthesis: Identification of Hyp Protein Complexes in Ralstonia eutropha† (world) [Research-article]. ACS Publications; American Chemical Society.
- ↑ Li, T., Jiang, Q., Huang, J., Aitchison, C. M., Huang, F., Yang, M., Dykes, G. F., He, H. L., Wang, Q., Sprick, R. S., Cooper, A. I., & Liu, L. N. (2020). Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature communications, 11(1), 5448.
- ↑ Oltrogge, L. M., Chaijarasphong, T., Chen, A. W., Bolin, E. R., Marqusee, S., & Savage, D. F. (2020). Multivalent interactions between CsoS2 and Rubisco mediate α-carboxysome formation. Nature structural & molecular biology, 27(3), 281–287.
- ↑ Li, T., Jiang, Q., Huang, J., Aitchison, C. M., Huang, F., Yang, M., Dykes, G. F., He, H. L., Wang, Q., Sprick, R. S., Cooper, A. I., & Liu, L. N. (2020). Reprogramming bacterial protein organelles as a nanoreactor for hydrogen production. Nature communications, 11(1), 5448.
None |