Coding

Part:BBa_K5398020:Experience

Designed by: Chaoran Li   Group: iGEM24_NAU-CHINA   (2024-09-07)
Revision as of 05:59, 30 September 2024 by Chaoranli (Talk | contribs)


This experience page is provided so that any user may enter their experience using this part.
Please enter how you used this part and how it worked out.

Applications of BBa_K5398020

In order to obtain proteins with adhesive properties, we used the pET-SUMO vector to express TRn4-mfp5 ( BBa_K5398020) ). We tried different strategies for TRn4-mfp5 protein production and purification and tested its function.


Characterization

In order to obtain proteins, test suitable expression conditions, and evaluate the function of TRn4-mfp5, we chose three different expression vectors (Fig. 3)—pET-28a(+), pET SUMO, and pET-21a(+)—and tried different strategies for TRn4-mfp5 protein production and purification.</p>

Protein purification

Fig. 3 | Three different vectors used in protein expression.

a. The plasmid map of pET-28a(+)-His-SUMO-TRn4-mfp5; b. The plasmid map of pET SUMO-TRn4-mfp5; c. The plasmid map of pET-21a(+)-TRn4-mfp5.

Protein Expression

We expressed the protein in E. coli BL21(DE3) using LB medium. After incubation at 16°C for 20 h or at 37°C for 4 hours, we found that the protein expressed better under the 16°C for 20 h condition, as indicated by the stronger bands in Fig. 4. This suggests that lower temperature incubation may enhance protein solubility and proper folding, resulting in improved yield.

Protein purification

Fig. 4 | Comparison of fusion protein expression in different temperature use vector pET-21a(+).

Lanes 1-6 (LB 37°C 4 h): 1. Protein ladder; 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); 5. total liquid (-IPTG); 6. supernatant (-IPTG); 7. precipitate (-IPTG); Lanes 8-13 (TB 16°C 20 h): 8. Protein ladder; 9. total liquid (+IPTG); 10. supernatant (+IPTG); 11. precipitate (+IPTG); 12. total liquid (-IPTG); 13. supernatant (-IPTG); 14. precipitate (-IPTG).

Since there was some discrepancy in the target band size observed in the SDS-PAGE gel, and the bands were not very distinct, we also tried another medium in an attempt to increase the expression level of the fusion protein. We additionally used TB medium and compared its expression efficiency with that of LB medium. We found that the bands in the TB medium were indeed thicker than those in the LB medium, indicating a slight increase in expression levels, although the difference was not significant.
Protein purification

Fig. 5 | Comparison of fusion protein expression in LB and TB media use vector pET-21a(+).

1. Protein ladder; Lanes 2-7 (LB 16°C 20 h): 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); 5. total liquid (-IPTG); 6. supernatant (-IPTG); 7. precipitate (-IPTG); Lanes 8-13 (TB 16°C 20 h): 8. Protein ladder; 9. total liquid (+IPTG); 10. supernatant (+IPTG); 11. precipitate (+IPTG); 12. total liquid (-IPTG); 13. supernatant (-IPTG); 14. precipitate (-IPTG).

We compared protein expression between the BL21(DE3) and Rosetta E. coli strains. Rosetta, derived from BL21, includes a compatible chloramphenicol-resistant plasmid that provides tRNA genes for six rare codons (AUA, AGG, AGA, CUA, CCC, GGA) that are often underrepresented in E. coli . This modification is designed to overcome expression limitations when eukaryotic genes, which frequently use these rare codons, are expressed in a prokaryotic system. We used the pET SUMO vector for expression.
While Rosetta is optimized to address these rare codon issues and can be advantageous when expressing eukaryotic proteins with high rare codon usage, our results showed that protein expression levels were higher in the BL21(DE3) strain. This discrepancy could be due to several factors. One possibility is that our target protein does not contain a sufficient number of rare codons to significantly hinder translation in BL21(DE3). Additionally, the extra plasmid load in Rosetta could impose a metabolic burden, reducing its overall protein production efficiency. As a result, in cases where rare codon usage is not a critical factor, BL21(DE3) might provide a more efficient platform for protein expression.
The results indicate that the protein expression level in the BL21(DE3) strain is higher compared to that in the Rosetta strain.
Protein purification

Fig. 6 | Comparison of fusion protein expression in E. coli strains BL21(DE3) and Rosetta.

1. Protein ladder; Lanes 2-4 (BL21(DE3) LB 37℃ 4h) 2. total liquid (+IPTG); 3. supernatant (+IPTG); 4. precipitate (+IPTG); Lanes 5-7 (Rosetta LB 37℃ 4h) 5. total liquid (+IPTG); 6. supernatant (+IPTG); 7. precipitate (+IPTG).

Protein Purification

After considering both expression efficiency and practical experimental constraints, we decided to express the fusion protein at 37°C for 4 h in LB medium using the pET-SUMO-TRn4-mfp5 plasmid.

As shown in Figures 4-6, the target protein was present in the pellet after cell lysis. Therefore, we denatured the pellet of the fusion protein TRn4-mfp5 with 8M urea overnight and renatured it through dialysis. This process resulted in some protein loss, as confirmed by SDS-PAGE analysis.

Consequently, we proceeded to purify the fusion protein TRn4-mfp5 using a Ni-NTA Gravity Column.

The target protein bands were present in lanes 4 to 7, indicating successful expression of the target protein, with a particularly strong band in the supernatant after denaturation (Fig. 7, lane 7). After purification, the target protein was mainly found in the 150 mM and 300 mM imidazole elution fractions.

Protein purification

Fig. 7 | SDS-PAGE of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.

Lane 1: Protein - Binding buffer; Lane 2: 20 mM imidazole and 8 M urea elution; Lane 3: 50 mM imidazole and 8 M urea elution; Lane 4: 150 mM imidazole and 8 M urea elution; Lane 5: 300 mM imidazole and 8 M urea elution; Lane 6: 500 mM imidazole and 8 M urea elution; Lane 7: Supernatant; Lane 8: Impurities; Lane 9: Protein ladder.

To further confirm the expression of TRn4-mfp5, we performed a Western blot, which provided a clear and definitive conclusion, verifying the successful expression of the TRn4-mfp5 protein under the conditions mentioned above.

Protein purification

Fig. 8 | Western Blot of purified fusion protein TRn4-mfp5(35.4 kDa) uses vector pET-SUMO.

a. Western blot of the pre-expressed protein;b. Western blot after column purification of the supernatant following denaturation.

Adhesive test

We obtained protein samples of TRn4-mfp5 by freezedrying 24 h (Fig. 9). The final yield was about 25 mg/L bacterial culture.

Protein purification

Fig. 9 | The protein sample freeze-dried by a lyophilizer.

Next, we dissolved protein samples in Buffer A (10 mL 20 mM Tris pH8) to reach 0.3 mg/mL, and conduct adhesive ability tests on the fusion protein(Fig. 10). 200 μL of the protein solution was applied, and the pipette tip was placed on a plastic Petri dish lid. After incubation at 37°C for 8 h, the pipette tip successfully adhered.

Protein purification

Fig. 10 | Adhesive ability test of fusion protein on plastic surface

Viscosity Calculations Viscosity Calculations

Surface Area Calculation:

The surface area of a 10 µl pipette tip with an inner diameter of 3.7 mm is calculated as:

S = π × r² = π × (0.185 cm)² = 0.1075 cm²

Force Calculation:

The total mass is (5.951 + 0.448 × 3) grams, and the force is:

F = 7.295 g × 9.8 N/kg = 0.07149 N

Adhesive Force Calculation:

The adhesive force produced by the protein is:

P = F / S = 0.07149 N / 0.1075 cm² = 0.665 N/cm² ≈ 6.65 KPa

Adhesive Force per Milligram of Protein:

The adhesive force per milligram of protein is:

P' = P / m = 6.65 KPa / 1 mg = 6.65 KPa/mg

Reference

[1] Jung H., Pena-Francesch A., Saadat A, et al. Molecular tandem repeat strategy for elucidating mechanical properties of high-strength proteins[J]. PNAS, 2016, 113(23), 6478–6483.

[2] Zhang C, Wu B, Zhou Y, et al. Mussel-inspired hydrogels: from design principles to promising applications[J]. Chem Soc Rev, 2020, 49(3605): 3605-3637.