Part:BBa_K5246044
C.Crescentus CB2/CB2A hfsA-hfsB-hfsD Part of polysaccharide export apparatus
Introduction
Usage and Biology
TBA
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 1740
- 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 1740
Illegal NotI site found at 475 - 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 1740
- 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 1740
- 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 1740
Illegal NgoMIV site found at 151
Illegal NgoMIV site found at 343
Illegal NgoMIV site found at 352
Illegal NgoMIV site found at 924
Illegal NgoMIV site found at 1087
Illegal NgoMIV site found at 2026
Illegal NgoMIV site found at 2672 - 1000COMPATIBLE WITH RFC[1000]
Functional Parameters
Experimental characterization
Cloning the part into operon for holdfast polysaccharide polymerization and export
All of the proteins composing this system are responsible for polysaccharide polymerization and export. Proteins of the system are found in the membrane thus we came to a conclusion that using a low copy plasmid would decrease the probability of inclusion body formation. Their formation would diminish the functionality of our system, as the proteins would not allow the polysaccharide to be exported outside the bacteria.
To assemble specifically this part into BBa_K5246044 (https://parts.igem.org/Part:BBa_K5246044) to then further assemble the holdfast synthesis pathway in E. coli , we had to assemble this part first into a backbone of pACYC-Duet-1 with other BBa_K5246044 genes. We designed a strategy to maximize the success of plasmid assembly by first assembling plasmids with 3 genes, and after verifying the sequences, integrating 3 left genes into that backbone (). In this way, we prevented Golden Gate assembly errors by trying to construct plasmids from 8 or more fragments.
<img src="https://static.igem.wiki/teams/5246/results/creation-of-an-efficient-vector-system-for-holdfast-production-in-e-coli/golden-gate-strategy-for-holdfast-synthesis-cloning.webp" alt="Description of Image">
The assembly was done using Golden Gate assembly with IIS AarI restriction enzyme sites introduced during PCR amplification. The backbone of pACYC-Duet-1 (Novagen) and fragments were amplified using Phusion Plus DNA polymerase, as the genome of C. crescentus has a high GC% content making the appearance of non-specific products during PCR amplification more common and primer design more challenging (Fig. 3). Since, hfsA gene had an AarI RE site directly in the gene, this site was domesticated during side directed mutagenesis.
Due to the high amount of non-specific products, the fragments were gel-purified. Vectors and fragments composing this operon, were mixed in equimolar amounts with GG reaction components and incubated as described in protocol. The reaction was later transformed into E. coli Mach1 (Thermo Scientific) competent cells. The assembly was then confirmed with restriction digest analysis (Fig. 4) and positive colonies were sequenced.
References
None |