Part:BBa_K5246012
CB2/CB2A HfsL Glycosyltransferase
Introduction
Usage and Biology
TBA
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 235
Illegal NgoMIV site found at 378
Illegal NgoMIV site found at 609 - 1000COMPATIBLE WITH RFC[1000]
Experimental characterization
Bioinformatic analysis
CDD analysis showed specific hits in glycosyl transferase family 2. It is a diverse family, transferring sugar from UDP-glucose, UDP-N-acetyl-galactosamine, GDP-mannose, or CDP-abequose, to a range of substrates. Protein BLAST further supports these findings and suggests that HfsL is most likely family 2 glycosyltransferase, which has a domain very similar to the poly-beta-1,6-N-acetyl-D-glucosamine synthase domain of biofilm PGA synthase.
DeepTMHMM analysis suggests that the protein is likely globular and positioned on the inner side of the cell membrane. The AlphaFold3 structure provides additional evidence supporting its globular shape. A pTM score above 0.5 suggests that the predicted overall structure may closely resemble the true protein fold, while ipTM indicates the accuracy of the subunit positioning within the complex. Values higher than 0.8 represent confident high-quality predictions (Fig.1).
To sum up, HfsL is most probably a globular family 2 glycosyltransferase, responsible for N-acetyl-D-glucosamine transfer to the acceptor molecule, as is further verified by existing research. [1][2][3]
References
1. Hershey, D.M., Fiebig, A. and Crosson, S. (2019a) ‘A genome-wide analysis of adhesion in Caulobacter crescentus identifies new regulatory and biosynthetic components for holdfast assembly’, mBio, 10(1). doi:10.1128/mbio.02273-18.
2. Chepkwony, N.K., Hardy, G.G. and Brun, Y.V. (2022) ‘HFAE is a component of the holdfast anchor complex that tethers the holdfast adhesin to the cell envelope’, Journal of Bacteriology, 204(11). doi:10.1128/jb.00273-22.
3. Chepkwony, N.K., Berne, C. and Brun, Y.V. (2019b) ‘Comparative analysis of ionic strength tolerance between freshwater and marine caulobacterales adhesins’, Journal of Bacteriology, 201(18). doi:10.1128/jb.00061-19.
None |