Composite

Part:BBa_K4604023

Designed by: Hannah Swientek   Group: iGEM23_Freiburg   (2023-10-07)
Revision as of 13:52, 8 October 2023 by HannahSwientek (Talk | contribs)


piG_21 (tetR_bluB_riboK12_mazF_AmpProm_mazE)

BioBrick piG_21 is a plasmid consisting of the tet promoter/repressor, bluB, an AdoCbl riboswitch, MazF, the rrnB terminator, the Amp promoter, MazF and the rrnB terminator. The backbone we used in the experiments is pGGAselect.


Usage and Biology

So far, antibiotic resistances have played a crucial role in genetic engineering, ensuring plasmid retention. Intriguingly, plasmid retention does not guarantee plasmid encoded gene expression, since bacteria can use methods such as methylation or deletion to withdraw from the metabolic burden. This means that bacteria have their ways of not expressing inserted genes, defying the researchers control. This composite biobrick represents a novel tool to ensure not just the presence of a plasmid but also the expression of recombinant genes on it in bacteria. The key idea is to couple the production of a metabolite to the survival of the cell and thereby making it autoregulatory.

Modularity

Our composite part incorporates a riboswitch (BBa_K4604031), a toxin-antitoxin system (BBa_K4604037/BBa_K4604011) and an enzyme (BBa_K4604005) needed to boost the Adenosylcobalamin (AdoCbl) production in E. coli. Together, these parts were designed to form an autoregulatory circuit regulating the survival of the engineered cells. The system was tested and developed with AdoCbl production as a proof of principle, letting only AdoCbl producing cells survive. However, this biobrick can be easily adjusted for other purposes where plasmid stability plays an important role. The adjustability originates in the possibility to change the riboswitch (for sensing the desired compound) and the bluB gene (essential for bioproduction). The target compound can be any small molecule either arising from degradation or production, as long as a riboswitch for it exists, which allows the system to detect its presence. The limitation for the need of an already existing riboswitch could possibly be overcome by the use of a synthetic riboswitch made on the basis of an aptamer[1]. Synthetic aptamers can be generated through in vitro systematic evolution of ligands by exponential enrichment (SELEX) which allows for an even broader field of application of the composite part. However, this is a complex process and requires extensive testing which was outside of the capabilities of our iGEM project. The bluB gene can similarly be exchanged with an enzyme that fits the chosen product. The host organism is also variable; even though the biobrick is adapted to use in E. coli, with adjustments of the promoter-/terminator region and the toxin-antitoxin system it could be applicable to any chassis organism. To explore this opportunity we investigated the feasibility of producing AdoCbl in cyanobacteria. Read more on our results in cyanobacteria on the results page https://2023.igem.wiki/freiburg/production-results.


cellect-system1-pl21-schema.png Figure 1: Scheme of the final system


AdoCbl production

We decided on the AdoCbl (a bioavailable form of vitamin B12) production as a proof of concept. Vitamin B12 is an essential nutrient, humans are dependent on for the production of red blood cells, the synthesis of the DNA and the function of nerves. To form the complete AdoCbl synthesis pathway in E. coli, it would require 28 additional genes. Since this is not realistic nor practical for an iGEM project, we decided on an alternative method. When supplemented with cobinamide, a precursor for AdoCbl, E. coli is capable of producing AdoCbl on their own in small amounts. With the overexpression of a naturally occurring gene of the synthesis pathway, called bluB, a greater yield can be achieved[2].

Proof of the production

To characterize the functionality of this part we first of all used Western Blot, an ethanolamine medium and mass spectrometry to qualitatively and quantitatively prove the production of AdoCbl in E.coli MG1655.

Western Blot to demonstrate production relative to inducer strength

The Western Blot analysis using an anti-His-Tag antibody confirmed the induced expression of bluB. Different concentrations of the inducer doxycycline were tested to identify the optimal yield of the BluB protein.

PICTURE WESTERN BLOT (noch hochladen) Figure 2: BluB enzyme production for different inducer concentrations.Detection of recombinantly expressed, his-tagged BluB enzyme with SDS-PAGE followed by Western Blot. Detection of the BluB protein was performed with an anti-his antibody. Loading control: RNA polymerase β-subunit. E. coli BL21 DE3, [piG_01a, BBa_…] overnight culture in LB medium, uninduced.


While we observed an increase in Blub protein yield with increasing inducer concentration, we also noted a leaky expression without induction. This is most likely due to a silent mutation that we introduced in TetR to conform to iGEM standards for this part.

Ethanolamine Medium an easy method to check for AdoCbl production

Ethanolamine medium is a minimal medium devoid of any nitrogen source despite ethanolamine. Since nitrogen is crucial for cell division, E. coli is unable to grow in such a medium. Use of ethanolamine as a carbon or nitrogen source requires AdoCbl, which is the cofactor of ethanolamine ammonia lyase that catalyzes the conversion of ethanolamine to acetaldehyde and ammonia[3]. Cells can grow on ethanolamine only if there is AdoCbl available. Based on a publication from 1976[4] we were able to produce a minimal medium in order to demonstrate the production of AdoCbl by overexpression of bluB. In this assay we compared the growth of piG_01b / BBa_K4604015 to the mutated non-functional bluB expression construct (piG_07 / BBa_K4604020) after induced production in M9 medium.

Cells were cultivated in M9 medium, induced with 100 ng/ml DOX and supplemented with the essential substrate for AdoCbl synthesis. After 24 hours the cultures were washed and then cultivated in the ethanolamine medium to observe growth.

PICTURE ETHANOLAMINE MEDIUM GROWTH (hochgeladen) Figure 3: E. coli MG1655 growth curve comparison with maximum after 72 hours in 1975 ethanolamine medium. OD 600- measurement of culture samples containing plasmids pGGAselect, piG_01b, piG_07 or piG_10a using SpectraMax ID5 plate reader. The data present in these graphs is the result of at least two independent biological replicates.

The growth curves clearly show only cells capable of metabolizing the ethanolamine by producing AdoCbl are the induced ones that contain the functional bluB enzyme (piG_01b/piG_10a). E. coli are able to produce AdoCbl from DMB and cobinamide alone, but only in small amounts since they do not produce enough bluB to synthesize large amounts of DMB. With added DMB or an overexpression of BluB higher yields of AdoCbl can be obtained. This proves that bluB over-expression in E. coli leads to the AdoCbl synthesis crucial for ethanolamine metabolism.

Liquid Chromatography Mass Spectrometry (LC-MS) for quantitative testing

LC-MS is a method used to determine the concentration of molecules based on their mass. With this, it was possible to detect how much Hydroxocobalamin (OHCbl) we produce (relative to dry cell mass). OHCbl is another derivative of B12 that forms from AdoCbl when exposed to light. To make the preparation of the samples and measurement easier, we just worked in sunlight, let the AdoCbl turn into OHCbl and measured the amount of that. We cultivated bacteria containing either a functional or a mutated version of the blub gene and afterwards sent them to be measured with mass spectrometry.



Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 710
    Illegal BamHI site found at 2756
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 1603
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 2238
    Illegal BsaI site found at 2484
    Illegal BsaI site found at 3045


[edit]
Categories
Parameters
None