Generator

Part:BBa_K4475003

Designed by: Andrew Taylor   Group: iGEM22_FSU   (2022-07-18)
Revision as of 03:32, 14 October 2022 by Ekm18c (Talk | contribs)


CTB1 Constitutive Strong Protein Generator Yeast

Construct designed for strong expression of the fungal enzyme CTB1 in saccharomyces cerevisiae, utilizing the Yeast GPD (TDH3) Promoter and CYC100 Terminator.

Usage and Biology

CTB1 constitutive strong protein generator


CTB1.jpeg

CTB1

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 3532
    Illegal BamHI site found at 3441
    Illegal BamHI site found at 5614
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 6121
    Illegal AgeI site found at 4195
  • 1000
    COMPATIBLE WITH RFC[1000]

Modularity of Design

In our project, choices of plasmid copy number and promoter strength were modulated to encourage maximum production of cercosporin intermediates in our chassis, resulting in several combinatorial designs. Molecular cloning was done using NEB HiFi DNA assembly, allowing DNA fragments for coding sequences and regulatory elements to be interchanged by annealing purposefully designed overlaps.

See:
BBa_K4475003
BBa_K4475004
BBa_K4475005

Enzyme and Product Detection

Assays were implemented for enzyme and product detection


Enzyme Characterization

HA epitope tagging was used.


Product Characterization

The analytical chemistry assays proposed for product identification and quantification were inspired by existing literature. (1,2,3)

Results will be added during the wiki melt after the jamboree.

References

(1) Newman AG, Townsend CA. Molecular Characterization of the Cercosporin Biosynthetic Pathway in the Fungal Plant Pathogen Cercospora nicotianae. J Am Chem Soc. 2016 Mar 30;138(12):4219-28. doi: 10.1021/jacs.6b00633. Epub 2016 Mar 16. PMID: 26938470; PMCID: PMC5129747.

(2) Adam G. Newman, Anna L. Vagstad, Philip A. Storm, and Craig A. Townsend. Systematic Domain Swaps of Iterative, Nonreducing Polyketide Synthases Provide a Mechanistic Understanding and Rationale For Catalytic Reprogramming. Journal of the American Chemical Society 2014 136 (20), 7348-7362 DOI: 10.1021/ja5007299

(3) de Jonge R, Ebert MK, Huitt-Roehl CR, Pal P, Suttle JC, Spanner RE, Neubauer JD, Jurick WM 2nd, Stott KA, Secor GA, Thomma BPHJ, Van de Peer Y, Townsend CA, Bolton MD. Gene cluster conservation provides insight into cercosporin biosynthesis and extends production to the genus Colletotrichum. Proc Natl Acad Sci U S A. 2018 Jun 12;115(24):E5459-E5466. doi: 10.1073/pnas.1712798115. Epub 2018 May 29. Erratum in: Proc Natl Acad Sci U S A. 2018 Aug 28;115(35):E8324. PMID: 29844193; PMCID: PMC6004482.




Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 4213
    Illegal BamHI site found at 4122
    Illegal BamHI site found at 6295
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 6802
    Illegal AgeI site found at 4876
  • 1000
    COMPATIBLE WITH RFC[1000]




[edit]
Categories
//regulation/constitutive
regulator
Parameters
device_type
efficiency
negative_regulators
positive_regulators