Coding

Part:BBa_K4235000

Designed by: Maulik Masaliya, Lori Saxena, Stephanie Laderwager   Group: iGEM22_Stony_Brook   (2022-09-03)
Revision as of 21:19, 10 September 2022 by Maulik masaliya (Talk | contribs)


Human Protein S Gene (PROS1)


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 2028
    Illegal XbaI site found at 1341
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 2028
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 2028
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 2028
    Illegal XbaI site found at 1341
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 2028
    Illegal XbaI site found at 1341
  • 1000
    COMPATIBLE WITH RFC[1000]


Usage and Biology

Protein S is a vitamin K-dependent plasma protein that functions to prevent hypercoagulation of the blood. It serves as a non enzymatic cofactor for activated Protein C and is involved in the inactivation of coagulation factors Va and VIIIa. Protein S exists in two states in plasma, about 40% circulates as a free, functionally active form and the remaining 60% exists in the inactive form bound with C4b-binding protein. Protein S is secreted by hepatocytes, megakaryocytes, endothelial cells, etc. The initial form of secreted protein S is a 676 amino acid precursor protein, which undergoes a cleavage of a signal peptide present at the N-terminal, resulting in the mature 635 amino acid protein. Functionally active Protein S can directly bind to inhibit factor IXa, which activates factor X to Xa. Factor Xa and Va together form the prothrombinase complex responsible for activation of thrombin. Moreover, by acting as a cofactor for activated protein C, protein S promotes the cleavage of Factor VIIIa and Va, inhibiting the coagulation cascades.


Mutations in this gene (inherited as an autosomal dominant, homozygous or heterozygous fashion) cause non-functional or lower plasma levels of Protein S resulting in a Protein S deficiency. Individuals with Protein S deficiency are at an increased risk of developing abnormal blood clots, specifically in the smaller veins, known as venous thromboembolism. Two most common conditions associated with Protein S deficiency are deep vein thrombosis and pulmonary embolism. Although rare, infants with severe protein S deficiency can develop several blood clots throughout the body, resulting in a life threatening condition known as purpura fulminans. Moreover, severe COVID-19 infections are known to cause a decline in protein S levels, which further contributes to infection severity by causing extensive endothelial dysfunction and lung damage, which is a major cause of COVID-related mortality. Bioinformatics: (protein modeling info from dry lab analysis)

Characterization and measurements: at least add a pcr gel picture.

Future Direction:

[edit]
Categories
//cds/biosynthesis
//chassis/eukaryote
Parameters
chassisSpodoptera Frugiperda