Part:BBa_K1682018:Experience
This experience page is provided so that any user may enter their experience using this part.
Please enter
how you used this part and how it worked out.
Background - Lambert_GA 2020
Native to E. coli, the Nar Operon regulates anaerobic gene expression in response to two electron acceptors: nitrate and nitrite. This system consists of two homologous membrane-bound sensor proteins (NarX and NarQ) as well as two homologous DNA-binding response regulators (NarL and NarP). NarL’s conjugate is the membrane-bound NarX protein while NarP’s conjugate is the membrane-bound NarQ protein. Lambert iGEM is utilizing this system to test nitrate and nitrite levels, NarL and NarP expression, and downstream GFP expression through mathematical models.
NarL System - Lambert_GA 2020
The NarL system is designed based on HKUST-Rice 2015’s part BBa_K1682018, modeling after E.coli’s natural nitrate and nitrite sensor. While Lambert iGEM’s NarL system is modified to change the original design’s terminators due to problematic DNA synthesis, both HKUST-Rice’s and Lambert’s NarL biosensor detect nitrate [2]. The promoter BBa_J23106, an Anderson Promoter, constitutively produces TetR, which represses the PtetO promoter that produces NarL. By regulating the amount of aTc, the molecule that inhibits TetR, the team can control levels of NarL. NarX, the native membrane-bound protein, senses the amount of nitrate in the cell: in the presence of nitrate, NarX will phosphorylate NarL, activating it; however, if there is no nitrate present, NarX will not phosphorylate NarL [1]. The PdcuS promoter, which naturally produces green fluorescent protein (GFP), is repressed by phosphorylated NarL which causes lower GFP levels in the presence of nitrate [3]. Lambert iGEM plans to correlate the GFP levels to nitrate through mathematical modeling.
Experience - Lambert_GA 2020
To optimize functionality, Lambert_GA altered the original part designed by HKUST-Rice 2015 by replacing the original terminators with rrNB T1 terminator and T7Te terminator, BBa_B1002, after super folder GFP and a rrnBT1 T1 terminator, BBa_J61048, after TetR.
Applications of BBa_K1682018
Lambert_GA 2020 is working on demonstrating that this part can be transformed into competent E.coli cells while retaining functionality. Attempts at ligation both with restriction digest cloning and Gibson Assembly cloning failed. Our team is continuing to troubleshoot and is still in the cloning process. In 2021, we plan on utilizing this to model a nitrate biosensor in hydroponic/aquaponic systems.
<img src=""
References - Lambert_GA 2020
[1] Darwin A.J., & Stewart V. (1996) The NAR Modulon Systems: Nitrate and Nitrite Regulation of Anaerobic Gene Expression. In: Regulation of Gene Expression in Escherichia coli. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8601-8_17
[2] HKUST-Rice iGEM (2015). Potassium, Phosphate and Nitrate Biosensors. Retrieved from http://2015.igem.org/Team:HKUST-Rice/Nitrate_Sensor_PyeaR
[3] Gob E., Bledsoe P., Chen L., Gyaneshwar P., Stewart V., & Igo M. (2005). Hierarchical Control of Anaerobic Gene Expression in Escherichia coli K-12: the Nitrate-Responsive NarX-NarL Regulatory System Represses Synthesis of the Fumarate-Responsive DcuS-DcuR Regulatory System. Journal of Bacteriology, 187(14): 4890–4899. doi: 10.1128/JB.187.14.4890–4899.2005
UNIQf0c5a831939bc887-partinfo-00000000-QINU
UNIQf0c5a831939bc887-partinfo-00000001-QINU