Part:BBa_K3552021
hofN
HofN is a DNA utilization protein which is required for the use of extracellular DNA as a nutrient. Its functions include the carbon utilization, DNA catabolic process, type IV pilus biogenesis and type IV pilus-dependent motility.This part is in the part collection where we have 12 genes that code for the base generator of pilA.
The part collection includes: Parts that are different kinds of type 4 pilus: BBa_K3552000 BBa_K3552001 BBa_K3552002. Parts that are the generator of the type 4 pilus: BBa_K3552003 BBa_K3552004 BBa_K3552005 BBa_K3552006 BBa_K3552007 BBa_K3552008 BBa_K3552018 BBa_K3552019 BBa_K3552020 BBa_K3552021 BBa_K3552022 BBa_K3552023 BBa_K3552024 BBa_K3552025 BBa_K3552026 BBa_K3552027 BBa_K3552028 BBa_K3552029. Parts that are a complete circuit: BBa_K3552009 BBa_K3552010 BBa_K3552011 BBa_K3552012.
Our part collection can instruct other teams to designed new rechargeable pilus and substitution of different major pilin.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Reference
Luna Rico, Areli et al. “Functional reconstitution of the type IVa pilus assembly system from enterohaemorrhagic Escherichia coli.” Molecular microbiology vol. 111,3 (2019): 732-749. doi:10.1111/mmi.14188
Usage and Biology
HofN is a component in the transmembrane protein that connected to the outer membrane secretin channel formed by the hofQ. The HofB gene is a ATPase motor which localized at the base of the pilin generator system in the inner membrane, propel the assembly of pilus and it interacts with the platform protein HofC and HofM component of the inner membrane anchored assembly platform complex that also includes HofN and HofO. The hofMNOPQ operon encodes the assembly platform complex connecting HofB ATPase with the secretin hofQ. The hofMNOPQ is the generation pathway of pilA from the inner membrane to the surface of outer membrane.
Characterization
We tried to uncoupled all the genes into single ones and we already separated them. We mutated the sequence and codon optimization of the repeated sequence from two genes to prevent recombination. In the future we are going to link all single genes to the same promotor and reconstructed all genes into a complete circuit to see any difference comparing to the initial combined genes.
None |