Part:BBa_K3039019
PETase Reconstructed Ancestor 3
The enzymes PETase and MHETase were first discovered in Ideonella sakaiensis in 2016 by a group of researchers in Japan. These enzymes were found to degrade polyethylene terephthalate (PET) into its monomers, terephthalic acid (TPA) and ethylene glycol (EG). PETase degrades PET into Mono-(2-hydroxyethyl)terephthalic acid (MHET), Bis(2-Hydroxyethyl) terephthalate (BHET) and TPA, the main product being MHET. MHET is further degraded by MHETase into TPA and EG. We are aiming to use mutants of these enzymes to degrade the microfibres that are coming off clothing during washing cycles. The enzymes would be secreted into a filter that captures the microfibres. This is the sequence of one of the four reconstructed ancestors of PETase with a His tag attached to it. The sequence has been obtained through the method of ancestral reconstruction. The His tag has been used in order to more easily identify the enzyme.
Characterisation
In order to characterise our part and determine the rate of its activity and prove its functionality we have run a series of experiments. After transforming the Arctic Express, Rosetta Gami and BL21 DE3 strains of E. coli with our plasmid we induced the expression of the enzymes using IPTG. In order to confirm that the enzyme expression has been successful we ran a western blot which showed the presence of the enzyme in the soluble fractions of the sonicated cells. Afterwards the enzyme was purified and used in assays to show its functionality and determine the rate of its activity.
Expression in E.coli
Protein Purification
Assays
Esterase Assays
Thermal Stability Assay
Thermal Shift Assay
PET Assay
Sequence and Features
- 10INCOMPATIBLE WITH RFC[10]Illegal EcoRI site found at 255
- 12INCOMPATIBLE WITH RFC[12]Illegal EcoRI site found at 255
- 21INCOMPATIBLE WITH RFC[21]Illegal EcoRI site found at 255
Illegal BamHI site found at 21 - 23INCOMPATIBLE WITH RFC[23]Illegal EcoRI site found at 255
- 25INCOMPATIBLE WITH RFC[25]Illegal EcoRI site found at 255
- 1000COMPATIBLE WITH RFC[1000]
None |