Part:BBa_K3089021
Characterization
BBa_K3089011 was characterized in following experiments:
- protein expression
- protein purification
- Surface coating analysis
Protein expression
csgA-linker-mfp5 was cloned into pET28b and expressed in E.coli BL21(DE3) Rosetta by 500μM IPTG for 5h at 37℃. In order to detect its expression, whole cells were collected after induction by centrifuging and prepared for SDS-PAGE. Results (Figure 1)showed that no obvious protein bands of CsgA-mfp5(~24 kDa) could be observed on lane csgA-linker-mfp5 compared with lane NC (pET28b empty vector) and mfp5(BBa_K1583002), which means the expression of this protein is not well in BL21(DE3) Rosetta (Figure 1A). Quantitative densitometry of SDS-PAGE gel analysis revealed that csgA-linker-mfp5 expressed better than mfp5 alone (Figure 1B).
Protein purification
For we make producing underwater bio-adhesives as the final goal of our project, we straightly went on protein purification of CsgA-linker-mfp5 with the methods used for Mfp5 purification. Weak bands presented on the lane E2 and its size is larger than predicted which is resulting from high isoelectric point value (9.76). Protein concentrations of CsgA-mfp5 were measured by BCA assay and its yield is 0.5mg/L. In conclusion, putting CsgA on the N-terminal of Mfp5 increase its expression level.
Surface coating analysis
After obtaining a small number of recombinant proteins, surface coating analysis for qualitatively assessing the surface adsorption ability of recombinant proteins was conducted on two of most commonly used bio-related surfaces: hydrophilic glass slides and hydrophobic polystyrene tissue culture plates. As shown in Figure3, rBalcp19k-linker-mfp5 recombinant protein showed higher surface absorption abilities on both different substrates than rBalcp19k without fusion of mfp5 on its C-terminal. It’s suggested that Mfp improves the coating ability of rBalcp19k-linker-mfp5 fusion proteins. The In-vitro DOPA modification by mTyr-CNK tyrosinase significantly improved its surface absorption abilities, which suggested the positive contribution of DOPA in adhesive protein performances.
References
Zhong, C. et al., 2014. Strong underwater adhesives made by self-assembling multi-protein nanofibres. Nature nanotechnology, 9(10), pp.858–66None |