Part:BBa_K2607001:Design
HB-EGF/Tar Receptor (HT) Device
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 1294
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1434
Design Notes
In HB-EGF, the part that serves as binding domain for diphtheria exotoxin predominantly located in the extracellular environment. Therefore, the domain, expands between 20th–160th amino acid, was selected from natural HB-EGF protein. On the other hand, the Tar domain that are functions to establish intracellular chemotactic signalling includes NdeI cutting-site (around 257th amino acid) until the utmost C-terminal of the protein (the 553rd amino acid). By those factors, our team also selected Tar domains involving the 1st–33rd and 191st–553rd amino acid as part of chimeric protein (Figure 1).
Our team have predicted the HB-EGF/Tar protein orientation in the Escherichia coli membrane. For this purpose, server TMHMM and OPM Membrane, are utilized to predict protein orientation (Figure 2 and 3). Conceptual hypothesis about the chimera protein is that it should begin its orientation of C-terminus in cytoplasm, then continued to fold into transmembrane and extracellular sites, as well as re-folding towards cytoplasm. From the results, it could be concluded that the protein was oriented as expected in the hypothesis. Therefore, the usage of chimera protein is predicted to be functional anatomically.
After deciding sequence combination of amino acids in model chimera HB-EGF/Tar protein, analyzing the interaction of both fusion protein and diphtheria exotoxin is extremely important to ensure functional ligand-receptor system. The basic concept of interaction modelling is that the protein will be bound to each other well if it causes the ‘environment’ energy (termed by E parameter; calculated by formula in Figure 4) being lowered down. In this part, our team sent the respective sequence to ClusPro website for further analyzing.
The result of interaction modelling is quantified as energy score based on the formula above. Referring to Figure 5 and 6, we might expect that the DiphTox (cyan) would bind to both native and chimeric HB-EGF receptor that are both located in the extracellular (green). It is indicated by higher energy score of interaction between chimeric HB-EGF/Tar receptor-DiphTox than that of to HB-EGF natural receptor-DiphTox (Table 1). This means that the chimeric receptor could bind towards DiphTox as good (or even better) than the original one.
Table 1. Comparation of E parameter of native and chimera protein of HB-EGF interacted with DiphTox.
HB-EGF Protein |
Median Energy (kcal/mol) |
Lowest Energy (kcal/mol) |
Native |
-944.3 |
-944.3 |
Chimera |
-858.2 |
-934.4 |
Source
gg