Composite

Part:BBa_K2235009

Designed by: Shivashree Dhanaraj, Shanlin Tong, Gilai Nachmann and Sina Amoor pour   Group: iGEM17_Stockholm   (2017-10-11)
Revision as of 07:10, 28 October 2017 by Tongshl (Talk | contribs) (Characterization)


Sialidase composite with T7 promoter and RBS

Introduction

This biobrick is a constitute of T7 promoter and RBS followed by sialidase enzyme coding site. Sialidase enzyme has the potential to digest terminal sialic acids in a glycoprotein. The sequence originates from the species Arthrobacter Ureafaciens.

Usage and Biology

Sialidase enzyme can hydrolyze glycosidic linkages of terminal sialic acid residues in glycoproteins. Following image represents the reaction mechanism of an active enzyme.

Figure 1: Schematic representation of Sialidase enzyme reaction mechanism.

















Characterization

Important parameter

Table 1: Parameters used for expression and purification of sialidase enzyme.



Molecular cloning

Ligation of sialidase composite insert into pSB1C3

The gblock containing T7 promoter-RBS-sialidase was ligated into the Chloramphenicol plasmid backbone (pSB1C3). Preliminary confirmation of cloning was done by double digest Ecor1 and Pst1. Figure 1 represents the double digestion result: bands were visible at ~1600 bp and ~2000 bp which represents the insert and plasmid backbone respectively.

Figure 2:From left to right: M DNA ladder, next 2 lanes are plasmids digested with Ecor1 and Pst1.



Purification and identification

Figure 3: SDS-PAGE gel and a protein ladder. From left to right: protein ladder, the remaining three are IMAC purification fractions of sialidase.

The cloned gblock plasmid culture was induced with IPTG for expression. Post expression the cells were sonicated and purified using Immobilized Metal Affinity Chromatography(IMAC). The purified enzymes were tested on SDS PAGE(Figure 2). As control, sialidase enzyme plasmid from literature research lab(see reference) was used. The control plasmid(au54) holds the enzyme coding site on a backbone which is not compatible with iGEM standards. Similar cloning, expression and purification methods were carried out on both, gblock+pSB1C3 plasmid and the control plasmid. A band could be observed at 60 kDa. Note: According to the literature the expected size of the enzyme should be at 55 kDa. However, the size of enzyme purified from the control plasmid(au54) and designed plasmid are consistent. To demonstrate the above, an SDS-PAGE on both samples was carried out. The au54 sialidase and our designed biobrick sialidase, with molecular sizes of 54kDa and 55 kDa respectively. Figure 3 shows that there is no observable difference in size between the two proteins. Sialidase is a protein with a high content of basic amino acids, therefore it was hypothesized that this might affect the travelling speed through the gel.


Sequence and Features

Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal XhoI site found at 127
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 574
    Illegal NgoMIV site found at 649
    Illegal NgoMIV site found at 739
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 1119


[edit]
Categories
Parameters
None