Coding

Part:BBa_K1998001

Designed by: Shauna Winchester   Group: iGEM16_Macquarie_Australia   (2016-10-13)
Revision as of 01:31, 21 October 2016 by Emelio07 (Talk | contribs) (Overview)


YCF54 - ChlM

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Unknown
  • 21
    INCOMPATIBLE WITH RFC[21]
    Unknown
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 478


Overview

This composite part consists of the genes yCF54 and chlM. They come from the chlorophyll biosynthetic pathway of Chlamydomonas reinhardtii. The genes encode the enzymes Mg-protoporphyrin IX monomethyl ester (oxidative) cyclase (yCF54) and Magnesium-protoporphyrin O-methyltransferase (chlM). When combined with the Mg-chelatase plasmid BBa_K1998000, it can convert protoporphyrin IX to protochlorophyllide.

ChlorophyllBiosynthesisDiagram

Biology & Literature

These two genes within this part are used within an operon in the biosynthesis pathway. cF54 works with the cTH1 gene and Plastocyanin within the oxidative cyclase pathway. It's interaction with other genes results in the catalysis of the biosynthesis pathway from Mg-protoporphyrin IX to Protochlorophyllide [1]. Deletion studies have detected the importance of yCF54 in maintaining levels of Mg-protoporphyrin IX methyl ester indicating that the yCF54 gene is critical to both the assembly and function of the cyclase complex [1].

The second gene in this part is chlM. chlM encodes for a magnesium protoporhyrin IX methytransferase. chlM's role in the pathway is to methylate Mg-protoporphyrin IX which then aids the catalysis of Mg-cheltase [2]. This then facilitates the formation of the final protochlorophyllide. Involved in the second step of the pathway, the chlM gene is involved in the transfer of a methyl group onto one of the rings of magnesium protoporphyrin which forms the magnesium prootoporhyrin IX monomethylester [3, 4].

Protein information

yCF54
mass: 17.08kDa
sequence: MAPAAASADKATAAEYYALVCNAEWFFMDPQNESVAEQLREKVRFFKEQN KERDFFIVPNPKWLDAKFPEQAKQVKRPCVALVSTDKMWITFMKLRLDRV LKIDLKSMPASEVLAAGEALPDFKPDGKWTAPYARYTPGWWNVFLPNH


chlM
mass: 30.45kDa sequence: MASEIAQTADVGSLTFAVGGVGAVVGLGALLVATDHQKRRSEQMKSFDGD EKEAVKDYFNTAGFERWRKIYGETDEVNKVQLDIRTGHAQTVDKVLRWVD EEGSVQGITVADCGCGTGSLAIQLALRGAAVSASDISAAMASEAEQRYQQ AVAAGQGKAPKVAPKFEALDLESVKGKYDTVTCLDVMIHYPQDKVDAMIT HLAGLSDRRLIISFAPKTLSYSILKRIGELFPGPSKATRAYLHREEDVEAALK RAGFKVTKREMTATSFYFSRLLEAIRE

References

[1] Hollingshead S, Kopečná J, Jackson PJ, Canniffe DP, Davison PA, Dickman MJ, Sobotka R, Hunter CN. Conserved chloroplast open-reading frame ycf54 is required for activity of the magnesium protoporphyrin monomethylester oxidative cyclase in Synechocystis PCC 6803. Journal of Biological Chemistry. 2012 Aug 10;287(33):27823-33.

[2] Alawady A, Reski R, Yaronskaya E, Grimm B. Cloning and expression of the tobacco CHLM sequence encoding Mg protoporphyrin IX methyltransferase and its interaction with Mg chelatase. Plant molecular biology. 2005 Mar 1;57(5):679-91.

[3] Shepherd M, McLean S, Hunter CN. Kinetic basis for linking the first two enzymes of chlorophyll biosynthesis. FEBS Journal. 2005 Sep 1;272(17):4532-9.

[4] Meinecke L, Alawady A, Schroda M, Willows R, Kobayashi MC, Niyogi KK, Grimm B, Beck CF. Chlorophyll-deficient mutants of Chlamydomonas reinhardtii that accumulate magnesium protoporphyrin IX. Plant molecular biology. 2010 Apr 1;72(6):643-58.

[edit]
Categories
Parameters
None