Coding

Part:BBa_K1998004

Designed by: Shauna Winchester   Group: iGEM16_Macquarie_Australia   (2016-10-12)
Revision as of 04:20, 18 October 2016 by SWinchester (Talk | contribs)


psbMZHWK

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 570
  • 1000
    COMPATIBLE WITH RFC[1000]


Overview

This part is composed of the psbM, psbZ, psbH, psbW and psbK genes. The psbM protein subunit is positioned at the monomer-monomer interface. The psbZ protein controls the interaction of Photosystem II cores with the light-harvesting antenna. The psbH protein is required for stability and assembly of the photosystem II complex. The psbW protein stabilizes dimeric photosytem II. The psbK protein is also required for stability and assembly of Photosystem II.
These parts make up one of the operons in our PSII pathway.

PhotosystemIISynthesis

Biology & Literature

PsbM encodes a highly hydrophobic protein, psbM, with a single, membrane spanning α-helix located at the monomer-monomer interface of PSII (Ferreira, Iverson, Maghlaoui, Barber, & Iwata, 2004). This proteins acts to stabilise the dimerization of PSII. While not a necessary factor for PSII biosynthesis, its absence weakens the dimer interconnection of the core complex, and may impair PSII repair (Umate et al., 2007). Deletion studies of this gene have shown a 28% decrease in successfully assembled PSII centres (Bentley, Luo, Dilbeck, Burnap, & Eaton-Rye, 2008).

PsbZ, also referred to as ycf9, is a highly conserved gene amongst photosynthetic species, encoding a two transmembrane helix protein, psbZ (Ferreira et al., 2004). PsbZ is found at the interface between PSII and light harvesting complex II (LHCII). (Minagawa & Takahashi, 2004). Deletion studies of psbZ have resulted in decreased stability of the PSII-LHCII supercomplex, suggesting this protein is involved in anchoring the two complexes (Swiatek et al., 2001).

PsbH encodes a low molecular weight PSII subunit, psbH, containing multiple phosphorylation sites (Vener, Harms, Sussman, & Vierstra, 2001). Deletion studies of this gene across multiple species have shown different effects. In Synechocystis sp., a slower growth rate, higher light sensitivity, and impaired electron transport from QA to QB has been observed (Mayes et al., 1993). In addition, the deletion of psbH has been observed to both destabilize the PSII complex, and impair the binding of bicarbonate to the complex (Komenda, Lupínková, & Kopecký, 2002), and in Chlamydomonas reinhardtii, eliminate the formation of the PSII complex, revealing psbH as a vital gene for the synthesis of Photosystem II (Summer, Schmid, Bruns, & Schmidt, 1997).


Protein information

psbM
mass: 3.76kDa
sequence: MEVNIYGLTATALFIIIPTSFLLILYVKTASTQD

psbZ
mass: 4.56kDa
sequence: MVGVPVVFATPNGWTDNKGAVFSGLSLWLLLVFVVGILNSFVV

psbH
mass: 6.02kDa
sequence: MSEAGKVLPGWGTTVLMAVFILLFAAFLLIILEIYNSSLILDDVSMSWETLAKVS

psbW
mass: 9.2kDa
sequence: MATTVRSEVAKKVAMLSTLPATLAAHPAFALVDERMNGDGTGRPFGVNDPVLGWVLLGVFGTMWAIWFIGQKDLGDFEDADDGLKL

psbK
mass: 5.0kDa
sequence: MTTLALVLAKLPEAYAPFAPIVDVLPVIPVFFILLAFVWQAAVSFR

References

[1]

[2]

[3]

[4]

[5]

[edit]
Categories
Parameters
None