Part:BBa_K2150101
Contents
Tetracycline resistance protein from Bacteroides fragilis
Usage and Biology
Among three dominant tetracycline resistance mechanisms, enzymatic inactivation of tetracycline is a novel type of resistance rather than extensively studied mechanism, efflux and ribosomal protein, which shows great potential in antibiotics degradation. TetX gene is the only thoroughly studied resistance gene initially found in Bacteroides fragilis, coding for a flavin-dependent monooxygenase Tet X that modifies tetracyclines and requires NADPH, Mg2+, and O2 for activity.[1]
Degradation Mechanism
TetX monooxygenase catalyzes regioselective hydroxylation at carbon 11a of tetracyclines. In solutions of pH greater than 1, the product 11a-hydroxytetracycline can decomposes rapidly and non-enzymatically into products that are not easily identifiable. [1]
The monooxygenase reaction mechanism relies on the redox
properties of FAD. After reduction to FADH2 by NADPH, the isoalloxazine binds molecular oxygen to form a hydroperoxide. FAD hydroperoxide is formed after substrate recognition, which subsequently direct substrate hydroxylation takes place.[2]
Figure. 2. Ribbon Plot of TetX
Expression, Purification and SDS-PAGE
We transferred plasmid containing BBa_K2150101 into Escherichia coli BL21 (DE3). The tetracycline resistance protein TetX monooxygenase is expressed under 18℃ in aerobic environment. TetX monooxygenase contains 388 amino acids, the molecular weight of which is 43.7 kDa. The SDS-PAGE of the Ni-NTA His tag purification of the TetX monooxygenase is shown in Figure.3.
Characterization: In vivo qualitative experiements
References
[1] Ian F. Moore, Donald W. Hughes, and Gerard D. Wright. Tigecycline Is Modified by the Flavin-Dependent Monooxygenase TetX. Biochemistry.44, 11829-11835 (2005)
[2] Gesa Volkers, Gottfried J. Palm, Manfred S. Weiss, Gerard D. Wright, Winfried Hinrichs. Structural basis for a new tetracycline resistance mechanism relying on the TetX monooxygenase. FEBS Letters. 585, 1061-1066(2011)
[3] Brenda S. Speer and Abigail A Salyers. Novel Aerobic Tetracycline Resistance Gene That Chemically Modifies Tetracycline. Journal of Bacteriology. 171.148-153 ( 1989 )
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 562
- 1000COMPATIBLE WITH RFC[1000]
//function/degradation
None |