Composite

Part:BBa_K1974022

Designed by: YU-CHUN WU   Group: iGEM16_NCTU_Formosa   (2016-10-14)
Revision as of 14:01, 18 October 2016 by TSUNG CHI CHEN (Talk | contribs)


T7Promoter+RBS+Sf1a+linker+snowdrop-lectin+linker+6X His-Tag



Mechanism of Sfv1a:

       According to reference, snowdrop-lectin is resistant to high temperature and would not be degraded by digestive juice. The species-specificity is based on the toxin, and the snowdrop lectin is the role of the carrier.

       According to reference, U2-segestritoxin-Sf1a has a structure called ICK(inhibitor cysteine knot).[1] This kind of structure contains three disulfide bonds and beta-sheet. With this structure, Hv1a can resist the high temperature, acid-base solution and the digest juice of insect gut. Hv1a can bind on insect voltage-gated Calcium channels (CaV1) in the central nervous system, making it paralyze and die eventually.


Features of Hv1:

1. Non-toxic: U2-segestritoxin-Sf1a is non-toxic to mammals and Hymenoptera (bees). Since the structure of the target ion channel is different, U2-segestritoxin-Sf1a does not harm mammals and bees. So it is safe to use it as a biological pesticide.


2. Biodegradable: U2-segestritoxin-Sf1a is a polypeptide so it must degrade over time. After degradation, the toxin will become nutrition in the soil.


3. Species-specific: According to reference, U2-segestritoxin-Sf1a has specificity to Lepidopteran (moths), Dipteran (flies) and Orthopteran (grasshoppers).


4. Eco-friendly: Compare with chemical pesticides, U2-segestritoxin-Sf1a will not remain in soil and water so that it will not pollute the environment and won’t harm the ecosystem.

       Together, using U2-segestritoxin-Sf1a is totally an environmentally friendly way for solving harmful insect problems by using this ion channel inhibitor as a biological pesticide.


Target insect:


Experiment

1. Cloning :
       After assembling the DNA sequences from the basic parts, we recombined each T7 Promoter+B0034+toxin +linker+6xHistag gene to pSB1C3 backbones and conducted a PCR experiment to check the size of each part. The DNA sequence length of these parts is around 250-500 bp. In this PCR experiment, the toxin product's size should be near at 450-700 bp. 放PCR電泳跑的圖(證明大小正確) proved that we successfully ligated the toxin sequence onto an ideal backbone.

2. Expressing:
       E.coli(DE3) express the protein and form the disulfide in the cytoplasm. We sonicated the bacteria and purified the protein by 6xHis-tag behind the toxin using Nickel resin column.

3. Analysis:
       We do the Bradford analysis to get the protein concentration.
Also, we do the UV test and model the degradation rate.

4.Modeling:
       According to reference, the energy of Ultraviolet will break the disulfide bonds and the toxicity is also decreased. To take the parameter into consideration for our automatic system, we modeled the degradation rate of the protein and modify the program in our device. 放預測降解速率的圖


5. Device:
       We designed a device that contains detector, sprinkler, and integrated hardware with users by APP through IoT talk. We use infrared detector to detect the number of the pest and predict what time to spray the farmland. Furthermore, other detectors like temperature, humidity, lamination, pressure of carbon dioxide and on also install in our device. At the same time, the APP would contact the users that all the information about the farmland and spray biological pesticides automatically. This device can make farmers control the farmland remotely. 放device的真實圖


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
//awards/part_collection/2016
Parameters
None