Part:BBa_K1682011
NsrR - Nitric oxide sensitive PyeaR repressor protein
Biology of NsrR
Escherichia coli (E. coli) detects environmental nitrate by the yeaR-yoaG operon. According to Figure 1, PyeaR (Lin, et al., 2007) is regulated by the Nar two-component regulatory system (Nohno et al., 1989; Li et al., 1987) and NsrR nitric oxide sensitive repressor protein (Partridge et al., 2009). When there is nitrate or nitrite, the repression from the Nar system on PyeaR will be relieved due to the binding between the two. On the other hand, some nitrate will be converted into nitric oxide by nitrate reductase. Nitric oxide will bind to the NsrR protein and relieve the repression on PyeaR. As a result, any genes that are downstream of PyeaR will be expressed.
References
Li, S. F., & DeMoss, J. A. (1987). Promoter region of the nar operon of Escherichia coli: nucleotide sequence and transcription initiation signals.Journal of bacteriology, 169(10), 4614-4620.
Lin, H. Y., Bledsoe, P. J., & Stewart, V. (2007). Activation of yeaR-yoaG operon transcription by the nitrate-responsive regulator NarL is independent of oxygen-responsive regulator Fnr in Escherichia coli K-12. Journal of bacteriology, 189(21), 7539-7548.
Nohno, T., Noji, S., Taniguchi, S., & Saito, T. (1989). The narX and narL genes encoding the nitrate-sensing regulators of Escherichia coli are homologous to a family of prokaryotic two-component regulatory genes. Nucleic acids research,17(8), 2947-2957.
Partridge, J. D., Bodenmiller, D. M., Humphrys, M. S., & Spiro, S. (2009). NsrR targets in the Escherichia coli genome: new insights into DNA sequence requirements for binding and a role for NsrR in the regulation of motility.Molecular microbiology, 73(4), 680-694.
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 154
- 1000COMPATIBLE WITH RFC[1000]
//chassis/prokaryote/ecoli
//function/sensor
None |