Part:BBa_J31001:Design
DNA invertase Hin tagged with LVA
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
This part is cloned in plasmid pSB1A2.
The Biobricks on this part are not wildtype but the cut sites are still viable.
BioBrick Prefix There is no T spacer between the NotI site and the XbaI site. There is no G spacer between the XbaI and the coding region. |
GAATTCGCGGCCGC-TCTAGA- |
Hin coding | TGGCTACTATTGGGTATATTCGGGTGTCAACAATTGACCAAAATATCGAT TTACAGCGTAATGCGCTTACCAGTGCAAATTGTGACCGCATTTTTGAGGA |
BioBrick Suffix: There is no T spacer between the insert and the SpeI site. The T spacer between the SpeI and the NotI sites should be an A. The last C of the NotI site is not conserved with the initial C from the PstI site. The BB suffix currently has this sequence for the NotI and PstI sites GCGGCCGcCTGCAG But it should have been: GCGGCCGCTGCAG | -ACTAGTTGCGGCCGCCTGCAG |
We compared our BioBricks with those from Tom Knight's paper, Idempotent Vector Design for Standard Assembly of Biobricks. As seen below
Data
HinLVA has been assembled with a pLac promoter and RBS (see BBa_S03536) to create a HinLVA expression casette. We observe inversion of HixC-flanked segments of DNA in the presence of this casette. Inversion occurs with induction of Hin expression. This may be caused by read-through from the vector backbone or leaky transcription from pLac.
Source
Salmonella typhimurium and the the Hin part without LVA.
References
Knight, Tom. Idempotent Vector Design for Standard Assembly of Biobricks