Difference between revisions of "Part:BBa K5237005"
Line 4: | Line 4: | ||
<partinfo>BBa_K5237005</partinfo> | <partinfo>BBa_K5237005</partinfo> | ||
<!--################################--> | <!--################################--> | ||
− | |||
<!--Add changes below---> | <!--Add changes below---> | ||
<html> | <html> | ||
Line 29: | Line 28: | ||
border: 0.5px solid black; | border: 0.5px solid black; | ||
border-collapse: collapse; | border-collapse: collapse; | ||
+ | padding: 5px; | ||
} | } | ||
− | + | .thumbcaption { | |
− | + | text-align: justify !important; | |
− | padding: | + | } |
+ | |||
+ | |||
+ | a[href ^="https://"], | ||
+ | .link-https { | ||
+ | background: none !important; | ||
+ | padding-right: 0px !important; | ||
} | } | ||
</style> | </style> | ||
Line 46: | Line 52: | ||
The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. tetR can be | The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. tetR can be | ||
readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part | readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part | ||
− | as a component of our simple staple (<a href="https://parts.igem.org/Part:BBa_K5237006">BBa_K5237006</a>) resulting in a bivalent DNA binding staple, and also fused to | + | as a component of our simple staple (<a href="https://parts.igem.org/Part:BBa_K5237006">BBa_K5237006</a>) |
− | mNeonGreen, as part of a FRET readout system (<a href="https://parts.igem.org/Part:BBa_K5237007">BBa_K5237007</a>). | + | resulting in a bivalent DNA binding staple, and also fused to |
+ | mNeonGreen, as part of a FRET readout system (<a | ||
+ | href="https://parts.igem.org/Part:BBa_K5237007">BBa_K5237007</a>). | ||
</p> | </p> | ||
− | <p> | + | <p> </p> |
</section> | </section> | ||
− | <div | + | <div class="toc" id="toc"> |
<div id="toctitle"> | <div id="toctitle"> | ||
<h1>Contents</h1> | <h1>Contents</h1> | ||
Line 67: | Line 75: | ||
<li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span | <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span | ||
class="toctext">Results</span></a> | class="toctext">Results</span></a> | ||
+ | <ul> | ||
+ | <li class="toclevel-2 tocsection-4"><a href="#4.1"><span class="tocnumber">4.1</span> <span | ||
+ | class="toctext">Protein expression and EMSA</span></a> | ||
+ | </li> | ||
+ | <li class="toclevel-2 tocsection-5"><a href="#4.2"><span class="tocnumber">4.2</span> <span | ||
+ | class="toctext"><i>In Silico</i> Characterization using DaVinci</span></a> | ||
+ | </ul> | ||
</li> | </li> | ||
<li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span | <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span | ||
Line 74: | Line 89: | ||
</div> | </div> | ||
<section> | <section> | ||
+ | <p><br /><br /></p> | ||
<font size="5"><b>The PICasSO Toolbox </b> </font> | <font size="5"><b>The PICasSO Toolbox </b> </font> | ||
− | + | <div class="thumb" style="margin-top:10px;"></div> | |
− | <div class="thumb"></div> | + | <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage" |
− | + | src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg" | |
− | + | style="width:99%;" /> | |
− | + | <div class="thumbcaption"> | |
− | + | <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i> | |
</div> | </div> | ||
</div> | </div> | ||
− | |||
<p> | <p> | ||
− | <br> | + | <br /> |
− | + | Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene | |
− | + | regulation, | |
− | + | cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture | |
− | + | remain limited, rendering it challenging to explore the full potential of the | |
3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular | 3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular | ||
toolbox based on various DNA-binding proteins to address this issue. | toolbox based on various DNA-binding proteins to address this issue. | ||
− | |||
</p> | </p> | ||
<p> | <p> | ||
Line 102: | Line 116: | ||
Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and | ||
testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include | testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include | ||
− | parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts | + | parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts. |
</p> | </p> | ||
− | + | <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding | |
− | <p>At its heart, the PICasSO part collection consists of three categories. <br><b>(i)</b> Our <b>DNA-binding proteins</b> | + | proteins</b> |
include our | include our | ||
finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely | finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely | ||
− | new Cas staples in the future. We also include our | + | new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling |
− | and can be further engineered to create alternative, simpler and more compact staples. <br> | + | and can be further engineered to create alternative, simpler and more compact staples. <br /> |
− | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These | + | <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance the functionality of our Cas and |
+ | Basic staples. These | ||
consist of | consist of | ||
protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>. | protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>. | ||
− | Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs with our | + | Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs |
− | interkingdom conjugation system. <br> | + | with our |
− | <b>(iii)</b> As the final | + | interkingdom conjugation system. <br /> |
+ | <b>(iii)</b> As the final category of our collection, we provide parts that support the use of our <b>custom | ||
+ | readout | ||
systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | systems</b>. These include components of our established FRET-based proximity assay system, enabling users to | ||
confirm | confirm | ||
accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional | accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional | ||
− | + | readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking | |
+ | in mammalian cells. | ||
</p> | </p> | ||
<p> | <p> | ||
− | The following table gives a | + | The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark |
− | + | style="background-color: #FFD700; color: black;">The highlighted parts showed | |
+ | exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other parts in | ||
+ | the | ||
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their | ||
− | own custom Cas staples, enabling further optimization and innovation.<br> | + | own custom Cas staples, enabling further optimization and innovation.<br /> |
</p> | </p> | ||
<p> | <p> | ||
− | <font size="4"><b>Our part collection includes:</b></font><br> | + | <font size="4"><b>Our part collection includes:</b></font><br /> |
</p> | </p> | ||
− | + | <table style="width: 90%; padding-right:10px;"> | |
− | <table style="width: 90%;"> | + | <td align="left" colspan="3"><b>DNA-binding proteins: </b> |
− | <td | + | |
The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring | The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring | ||
easy assembly.</td> | easy assembly.</td> | ||
Line 138: | Line 157: | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td> | ||
− | <td>fgRNA | + | <td>fgRNA Entry vector MbCas12a-SpCas9</td> |
<td>Entryvector for simple fgRNA cloning via SapI</td> | <td>Entryvector for simple fgRNA cloning via SapI</td> | ||
</tr> | </tr> | ||
− | <tr> | + | <tr bgcolor="#FFD700"> |
<td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td> | ||
<td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td> | <td>Staple subunit: dMbCas12a-Nucleoplasmin NLS</td> | ||
− | <td>Staple subunit that can be combined to form a functional staple | + | <td>Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple</td> |
</tr> | </tr> | ||
− | <tr> | + | <tr bgcolor="#FFD700"> |
<td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td> | ||
<td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td> | <td>Staple subunit: SV40 NLS-dSpCas9-SV40 NLS</td> | ||
− | <td>Staple subunit that can be combined | + | <td>Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple |
</td> | </td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td> | ||
− | <td>Cas | + | <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td> |
− | <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands | + | <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close |
+ | proximity | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 161: | Line 181: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td> | ||
<td>Staple subunit: Oct1-DBD</td> | <td>Staple subunit: Oct1-DBD</td> | ||
− | <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br> | + | <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br /> |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
</tr> | </tr> | ||
Line 167: | Line 187: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td> | ||
<td>Staple subunit: TetR</td> | <td>Staple subunit: TetR</td> | ||
− | <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br> | + | <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br /> |
Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | Can also be combined with a fluorescent protein as part of the FRET proximity assay</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td> | ||
− | <td>Simple | + | <td>Simple staple: TetR-Oct1</td> |
<td>Functional staple that can be used to bring two DNA strands in close proximity</td> | <td>Functional staple that can be used to bring two DNA strands in close proximity</td> | ||
</tr> | </tr> | ||
Line 192: | Line 212: | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
− | <td | + | <td align="left" colspan="3"><b>Functional elements: </b> |
− | Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization | + | Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization |
− | for custom applications | + | for custom applications</td> |
<tbody> | <tbody> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td> | ||
− | <td>Cathepsin B- | + | <td>Cathepsin B-cleavable Linker: GFLG</td> |
− | <td>Cathepsin B cleavable peptide linker | + | <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive |
staples</td> | staples</td> | ||
</tr> | </tr> | ||
Line 205: | Line 225: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td> | ||
<td>Cathepsin B Expression Cassette</td> | <td>Cathepsin B Expression Cassette</td> | ||
− | <td> | + | <td>Expression Cassette for the overexpression of cathepsin B</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><a href="https://parts.igem.org/Part: | + | <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td> |
<td>Caged NpuN Intein</td> | <td>Caged NpuN Intein</td> | ||
− | <td> | + | <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. |
+ | Can be used to create functionalized staples | ||
units</td> | units</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><a href="https://parts.igem.org/Part: | + | <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td> |
<td>Caged NpuC Intein</td> | <td>Caged NpuC Intein</td> | ||
− | <td> | + | <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease activation. |
+ | Can be used to create functionalized staples | ||
units</td> | units</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><a href="https://parts.igem.org/Part: | + | <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td> |
<td>fgRNA processing casette</td> | <td>fgRNA processing casette</td> | ||
− | <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for | + | <td>Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D |
+ | genome reprograming</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
− | <td><a href="https://parts.igem.org/Part: | + | <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td> |
<td>Intimin anti-EGFR Nanobody</td> | <td>Intimin anti-EGFR Nanobody</td> | ||
<td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large | <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large | ||
Line 231: | Line 254: | ||
</tr> | </tr> | ||
</tbody> | </tbody> | ||
− | <td | + | <td align="left" colspan="3"><b>Readout Systems: </b> |
FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells | FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells | ||
− | enabling swift testing and easy development for new systems | + | enabling swift testing and easy development for new systems</td> |
<tbody> | <tbody> | ||
<tr bgcolor="#FFD700"> | <tr bgcolor="#FFD700"> | ||
− | <td><a href="https://parts.igem.org/Part: | + | <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td> |
<td>FRET-Donor: mNeonGreen-Oct1</td> | <td>FRET-Donor: mNeonGreen-Oct1</td> | ||
− | <td> | + | <td>FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize |
+ | DNA-DNA | ||
proximity</td> | proximity</td> | ||
</tr> | </tr> | ||
Line 250: | Line 274: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td> | ||
<td>Oct1 Binding Casette</td> | <td>Oct1 Binding Casette</td> | ||
− | <td>DNA sequence containing 12 Oct1 binding motifs, | + | <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET |
proximity assay</td> | proximity assay</td> | ||
</tr> | </tr> | ||
Line 261: | Line 285: | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td> | ||
<td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td> | <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td> | ||
− | <td>Readout system that responds to protease activity. It was used to test | + | <td>Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker</td> |
− | + | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td> | ||
<td>NLS-Gal4-VP64</td> | <td>NLS-Gal4-VP64</td> | ||
− | <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking | + | <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking</td> |
</tr> | </tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td> | ||
<td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td> | <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td> | ||
− | <td>Readout system for enhancer binding. It was used to test | + | <td>Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker</td> |
− | + | ||
<tr> | <tr> | ||
<td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td> | <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td> | ||
<td>Oct1 - 5x UAS binding casette</td> | <td>Oct1 - 5x UAS binding casette</td> | ||
− | <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay | + | <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td> |
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 281: | Line 305: | ||
<td>TRE-minimal promoter- firefly luciferase</td> | <td>TRE-minimal promoter- firefly luciferase</td> | ||
<td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for | <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for | ||
− | simulated enhancer hijacking | + | simulated enhancer hijacking</td> |
</tr> | </tr> | ||
</tbody> | </tbody> | ||
</table> | </table> | ||
− | |||
</section> | </section> | ||
<section id="1"> | <section id="1"> | ||
Line 293: | Line 316: | ||
</html> | </html> | ||
− | |||
<!--################################--> | <!--################################--> | ||
− | <span class= | + | <span class="h3bb">Sequence and Features</span> |
<partinfo>BBa_K5237005 SequenceAndFeatures</partinfo> | <partinfo>BBa_K5237005 SequenceAndFeatures</partinfo> | ||
<!--################################--> | <!--################################--> | ||
− | |||
<html> | <html> | ||
− | |||
<body> | <body> | ||
Line 309: | Line 329: | ||
resistance mechanism against tetracycline (and derivatives). It does so by tightly controlling the gene expression | resistance mechanism against tetracycline (and derivatives). It does so by tightly controlling the gene expression | ||
of <i>tetA</i>, which encodes an efflux pump responsible for removing tetracycline from the cell. | of <i>tetA</i>, which encodes an efflux pump responsible for removing tetracycline from the cell. | ||
− | TetR binds selectively to two plaindromic recognition sequences (<i>tetO</i> | + | TetR binds selectively to two plaindromic recognition sequences (<i>tetO</i>>1,2) with high affinity. For DNA |
− | binding to occur tetR adopts a homodimeric structure and binds with two | + | binding to occur tetR adopts a homodimeric structure and binds with two α-helix-turn- α-helix motifs |
(HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline or its analogs, tetR undergoes a | (HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline or its analogs, tetR undergoes a | ||
conformational change, which prevents it from binding to DNA, therby allowing gene expression(Orth <i>et al.</i> | conformational change, which prevents it from binding to DNA, therby allowing gene expression(Orth <i>et al.</i> | ||
2000; Kisker <i>et al.</i> 1995). | 2000; Kisker <i>et al.</i> 1995). | ||
− | <br> | + | <br /> |
Due to its robust and highly regulatable DNA-binding properties, tetR has become a widely adopted tool in | Due to its robust and highly regulatable DNA-binding properties, tetR has become a widely adopted tool in | ||
synthetic | synthetic | ||
biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it | biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it | ||
− | an essential element in the development of gene regulation systems (Berens & Hillen, 2004). | + | an essential element in the development of gene regulation systems (Berens & Hillen, 2004). |
− | <br> | + | <br /> |
In our project, tetR was integrated into the design of a modular DNA-stapling system because of its | In our project, tetR was integrated into the design of a modular DNA-stapling system because of its | ||
well-characterized behavior, ensuring reliable DNA interactions. | well-characterized behavior, ensuring reliable DNA interactions. | ||
Line 341: | Line 361: | ||
<section id="4"> | <section id="4"> | ||
<h1>4. Results</h1> | <h1>4. Results</h1> | ||
− | <p> The fusion protein was expressed from a T7 based expression plasmid and subsequently | + | <section id="4.1"> |
− | + | <h2>4.1 Protein expression and EMSA</h2> | |
− | + | <p> The fusion protein was expressed from a T7 based expression plasmid and subsequently | |
− | + | purified using metal affinity chromatography with Ni-NTA beads.(Figure 1, left) | |
− | + | DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay | |
− | + | (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 | |
− | + | mM | |
− | + | EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). | |
− | + | <div class="thumb"> | |
− | + | <div class="thumbinner" style="width:62%"> | |
− | + | <div style="display: flex; justify-content: center; border:none;"> | |
− | + | <div style="border:none;"> | |
− | + | <a href="Fig2_left"> | |
− | + | <img alt="SDS-PAGE-tetR-mScI" class="thumbimage" | |
+ | src="https://static.igem.wiki/teams/5237/wetlab-results/sds-page-tetr-msc-expression-01.svg" | ||
+ | style="height: 350px; width: auto;" /> | ||
+ | </a> | ||
+ | </div> | ||
+ | <div style="border:none;"> | ||
+ | <a href="Fig2_right"> | ||
+ | <img alt="SiSt_EMSA_tetR-quali" class="thumbimage" | ||
+ | src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-tetr-quali.svg" | ||
+ | style="height: 350px; width: auto;" /> | ||
+ | </a> | ||
+ | </div> | ||
</div> | </div> | ||
− | <div style=" | + | <div class="thumbcaption" style="text-align: justify;"> |
− | < | + | <i><b>Figure 2: Expression and DNA binding analysis of tetR-mScarlet-I-His<sub>6</sub> fusion |
− | + | protein.</b></i><br /> | |
− | + | <i>Left image: SDS-PAGE analysis of protein expression. Lane 1: raw lysate of E. coli expression culture | |
− | + | after | |
− | </ | + | steril-filtration; Lane 2: Flow through of first wash |
+ | (10 bed volumes of NaP10 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 10 mM Imidazol)); Lane 3: Flow | ||
+ | through | ||
+ | of | ||
+ | second wash (10 bed volumes of NaP20 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 20 mM Imidazol)); Lane | ||
+ | 4: | ||
+ | Elution of purified protein. The expected band size of the protein is 50 737.60 Da, highlighted with a red | ||
+ | box on the gel.<br /> | ||
+ | Right image: Qualitative electrophoretic mobility shift assay of tetR in two different buffer systems. 1 | ||
+ | µM | ||
+ | protein and 0.5 µM DNA containing three tetR binding sites were equilibrated in different buffer sytstems | ||
+ | (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 | ||
+ | mM | ||
+ | EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). Bands were visualized by SYBR-safe staining after gel | ||
+ | electrophoresis | ||
+ | </i> | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
− | + | </p> | |
− | + | </section> | |
− | + | <section id="4.2"> | |
− | + | <h2>4.2 <i>In Silico</i> Characterization using DaVinci</h2> | |
− | + | <p> | |
− | + | We developed the in silico model <a href="https://2024.igem.wiki/heidelberg/model" target="_blank">DaVinci</a> | |
− | + | for rapid engineering | |
− | + | and development of our PiCasSO system. | |
− | + | DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, | |
− | + | refine experimental parameters, and find optimal connections between protein staples and target DNA. | |
− | + | We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and | |
− | + | purified | |
− | + | proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of | |
− | + | further | |
+ | experiments. Additionally, we apply the same approach to our part collection. | ||
+ | DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged | ||
+ | dna | ||
+ | dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the | ||
+ | dna-binding | ||
+ | interaction. | ||
+ | </p> | ||
+ | <!--Image waiting for tools page upload | ||
+ | <div class="thumb"> | ||
+ | <div class="thumbinner" style="width:80%;"> | ||
+ | <img alt=""src="" | ||
+ | style="width: 99;" class="thumbimage"> | ||
+ | <div class="thumbcaption"> | ||
+ | <i><b>Figure 4: DaVinci model prediction of the Simple staple constructs</b></i> | ||
</div> | </div> | ||
</div> | </div> | ||
− | </ | + | --> |
+ | </section> | ||
</section> | </section> | ||
<section id=" 5"> | <section id=" 5"> | ||
<h1>5. References</h1> | <h1>5. References</h1> | ||
<p>(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)</p> | <p>(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)</p> | ||
− | + | <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet | |
− | <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor | + | Repressor |
and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology, | and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology, | ||
247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138" | 247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138" | ||
target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p> | target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p> | ||
− | + | <p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet | |
− | <p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. | + | transregulators. |
− | <em>Nucleic Acids Research, 31</em>(12), 3050–3056.</p> | + | <em>Nucleic Acids Research, 31</em>(12), 3050–3056. |
− | + | </p> | |
− | <p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation | + | <p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene |
+ | regulation | ||
by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a | by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a | ||
href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p> | href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p> | ||
− | + | <p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). | |
− | <p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). | + | |
Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a | Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a | ||
href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p> | href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p> | ||
− | |||
</section> | </section> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 21:39, 30 September 2024
Half staple: TetR
The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. tetR can be readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part as a component of our simple staple (BBa_K5237006) resulting in a bivalent DNA binding staple, and also fused to mNeonGreen, as part of a FRET readout system (BBa_K5237007).
Contents
Next to the well-studied linear DNA sequence, the 3D spatial organization of DNA plays a crucial role in gene
regulation,
cell fate, disease development and more. However, the tools to precisely manipulate this genomic architecture
remain limited, rendering it challenging to explore the full potential of the
3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
toolbox based on various DNA-binding proteins to address this issue.
The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation. Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples, ensuring functionality in vitro and in vivo. We took special care to include parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts.
At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding
proteins
include our
finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
new Cas staples in the future. We also include our Simple staples that serve as controls for successful stapling
and can be further engineered to create alternative, simpler and more compact staples.
(ii) As functional elements, we list additional parts that enhance the functionality of our Cas and
Basic staples. These
consist of
protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling in vivo.
Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's constructs
with our
interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that support the use of our custom
readout
systems. These include components of our established FRET-based proximity assay system, enabling users to
confirm
accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
readouts via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking
in mammalian cells.
The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed
exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in
the
collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
own custom Cas staples, enabling further optimization and innovation.
Our part collection includes:
DNA-binding proteins: The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring easy assembly. | ||
BBa_K5237000 | fgRNA Entry vector MbCas12a-SpCas9 | Entryvector for simple fgRNA cloning via SapI |
BBa_K5237001 | Staple subunit: dMbCas12a-Nucleoplasmin NLS | Staple subunit that can be combined with sgRNA or fgRNA and dCas9 to form a functional staple |
BBa_K5237002 | Staple subunit: SV40 NLS-dSpCas9-SV40 NLS | Staple subunit that can be combined witha sgRNA or fgRNA and dCas12avto form a functional staple |
BBa_K5237003 | Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS | Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands into close proximity |
BBa_K5237004 | Staple subunit: Oct1-DBD | Staple subunit that can be combined to form a functional staple, for example with TetR. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237005 | Staple subunit: TetR | Staple subunit that can be combined to form a functional staple, for example with Oct1. Can also be combined with a fluorescent protein as part of the FRET proximity assay |
BBa_K5237006 | Simple staple: TetR-Oct1 | Functional staple that can be used to bring two DNA strands in close proximity |
BBa_K5237007 | Staple subunit: GCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237008 | Staple subunit: rGCN4 | Staple subunit that can be combined to form a functional staple, for example with rGCN4 |
BBa_K5237009 | Mini staple: bGCN4 | Assembled staple with minimal size that can be further engineered | Functional elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications |
BBa_K5237010 | Cathepsin B-cleavable Linker: GFLG | Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples |
BBa_K5237011 | Cathepsin B Expression Cassette | Expression Cassette for the overexpression of cathepsin B |
BBa_K5237012 | Caged NpuN Intein | A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units |
BBa_K5237013 | Caged NpuC Intein | A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation. Can be used to create functionalized staples units |
BBa_K5237014 | fgRNA processing casette | Processing casette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprograming |
BBa_K5237015 | Intimin anti-EGFR Nanobody | Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large constructs | Readout Systems: FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells enabling swift testing and easy development for new systems |
BBa_K5237016 | FRET-Donor: mNeonGreen-Oct1 | FRET Donor-Fluorpohore fused to Oct1-DBD that binds to the Oct1 binding cassette. Can be used to visualize DNA-DNA proximity |
BBa_K5237017 | FRET-Acceptor: TetR-mScarlet-I | Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA proximity |
BBa_K5237018 | Oct1 Binding Casette | DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay |
BBa_K5237019 | TetR Binding Cassette | DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay | BBa_K5237020 | Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 | Readout system that responds to protease activity. It was used to test cathepsin B-cleavable linker |
BBa_K5237021 | NLS-Gal4-VP64 | Trans-activating enhancer, that can be used to simulate enhancer hijacking | BBa_K5237022 | mCherry Expression Cassette: UAS, minimal Promotor, mCherry | Readout system for enhancer binding. It was used to test cathepsin B-cleavable linker |
BBa_K5237023 | Oct1 - 5x UAS binding casette | Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay |
BBa_K5237024 | TRE-minimal promoter- firefly luciferase | Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for simulated enhancer hijacking |
1. Sequence overview
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 466
2. Usage and Biology
The tetracycline repressor protein (tetR) is naturally present in gram-negative bacteria and is involved in the
resistance mechanism against tetracycline (and derivatives). It does so by tightly controlling the gene expression
of tetA, which encodes an efflux pump responsible for removing tetracycline from the cell.
TetR binds selectively to two plaindromic recognition sequences (tetO>1,2) with high affinity. For DNA
binding to occur tetR adopts a homodimeric structure and binds with two α-helix-turn- α-helix motifs
(HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline or its analogs, tetR undergoes a
conformational change, which prevents it from binding to DNA, therby allowing gene expression(Orth et al.
2000; Kisker et al. 1995).
Due to its robust and highly regulatable DNA-binding properties, tetR has become a widely adopted tool in
synthetic
biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it
an essential element in the development of gene regulation systems (Berens & Hillen, 2004).
In our project, tetR was integrated into the design of a modular DNA-stapling system because of its
well-characterized behavior, ensuring reliable DNA interactions.
3. Assembly and part evolution
TetR was C-terminally fused to create a tetR-mScarlet-I-His6.
As part of developing a Förster Resonance Energy Transfer (FRET) Assay, a modified version of tetR was created. This was achieved by fusing two tetR proteins using a flexible (G4S)6 linker. Previous reports in literature engineered single chain (scTetR) with unaltred DNA binding effiency by fusing to tetR proteins with a (G4S)6 linker, also reported in literature (Krueger et al. 2003; Zhou et al. 2007). Unfortunately, under the T7 promoter system we tested, the expression levels were insufficient for further experimental use. (More information can be found on our Wiki or the tetR-mScarlet-I composite part)
4. Results
4.1 Protein expression and EMSA
The fusion protein was expressed from a T7 based expression plasmid and subsequently purified using metal affinity chromatography with Ni-NTA beads.(Figure 1, left) DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl).
4.2 In Silico Characterization using DaVinci
We developed the in silico model DaVinci for rapid engineering and development of our PiCasSO system. DaVinci acts as a digital twin to PiCasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data obtained via EMSA assays and purified proteins. This enabled us to simulate enhancer hijacking in silico, providing valuable input for the design of further experiments. Additionally, we apply the same approach to our part collection. DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged dna dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the dna-binding interaction.
5. References
(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)
Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2+ Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260–280. https://doi.org/10.1006/jmbi.1994.0138
Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. Nucleic Acids Research, 31(12), 3050–3056.
Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural Biology, 7(3), 215–219. https://doi.org/10.1038/73324
Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnology, 7, 6. https://doi.org/10.1186/1472-6750-7-6