Difference between revisions of "Part:BBa K4195012"
Line 3: | Line 3: | ||
<partinfo>BBa_K4195012 short</partinfo> | <partinfo>BBa_K4195012 short</partinfo> | ||
− | |||
− | < | + | ===Biology=== |
− | === | + | |
+ | ClyA | ||
+ | |||
+ | Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the ''Enterobacteriaceae'' family. When fused to the C-terminal of ClyA, heterologous proteins can be displayed on the surface of the engineered bacteria and OMVs (outer membrane vesicles) released by them (''1''). | ||
+ | |||
+ | TTPB | ||
+ | |||
+ | TTPB is tail tubular protein B of podophage 7. It has been found that TTPB serves as ligands that recognizes the conserved ''Vibrio'' receptor Vp0980 to mediate phage adsorption. It binds with Vp0980 of ''Vibrio parahaemolyticus'' and then mediates phage adsorption and subsequent bacterial lysis (''2''). | ||
+ | |||
+ | |||
+ | ===Usage and design=== | ||
+ | |||
+ | Engineering OMVs for treating and preventing AHPND caused by the pathogen ''V. parahaemolyticus'' are a significant part of '''OMEGA''' project (<u>O</u>perable <u>M</u>agic to <u>E</u>fficiently <u>G</u>etting over <u>A</u>HPND). Based on the efforts of our previous projects in 2020 ([https://2020.igem.org/Team:XMU-China AnTea-Glyphosate]) and 2021 ([https://2021.igem.org/Team:XMU-China SALAGE]), we further developed the surface display system on the OMVs released by the engineered bacteria. The usage of cargo proteins were no more limited to enzymes that are usually utilized to catalyze series bio-chemical reactions, since some receptors or ligands involved in complex protein-protein interaction (PPI) were selected as the cargo candidates. This year, we chose two classic anchor proteins, ClyA and INPNC, to construct the display cassette with various cargo proteins including rFET (receptor), r''Lv''APN1 (receptor), TTPB (ligand) and TTPB (ligand) (Fig. 1). On one hand, with the receptors displayed, OMVs will gain the function of neutralizing toxins secreted by ''V. parahaemolyticus''. On the other hand, with the assistance of ligands displayed on the surface, OMVs will become a special vector to deliver antimicrobials for the specific pathogen. In summary, we have taken a step closer to the collections of '''extracellular functional elements (EFE), combining the OMVs, secretion systems and surface display systems''' which we have been dedicated to since 2020. Learn more information from our [https://2022.igem.wiki/xmu-china/design Design] page. | ||
+ | |||
+ | [[File:T--XMU-China--surface display circuit.png|300px]] | ||
+ | |||
+ | '''Fig. 1 Graphic description of the expression gene circuits for display cassette designed in OMEGA project.''' | ||
+ | |||
+ | For this part (ClyA-TTPB-his), TTPB was fused to the C-terminal of ClyA to surface display for targeting ''V. parahaemolyticus''. Arabinose-inducible system was used in the expression circuit of this part in pSB1C3 then constructed composite part <partinfo>BBa_K4195101</partinfo>. We transformed the constructed plasmid into ''E. coli'' BL21(DE3) for further verification of its expression and function on the surface of ''E. coli'' and OMVs, including the interaction between TTPB and Vp0980. | ||
+ | |||
+ | |||
+ | ===Characterization=== | ||
+ | |||
+ | ====1. Identification==== | ||
+ | |||
+ | When constructing this circuit, colony PCR and gene sequencing were used to verify that the transformatants were correct. Target bands (4688 bp) can be observed at the position around 5000 bp (Fig. 2). | ||
+ | |||
+ | [[File:T--XMU-China--BBa K4195101(ClyA-ttpB-his,colony PCR,BL21(DE3)).png|300px]] | ||
+ | |||
+ | '''Fig. 2 DNA gel electrophoresis of the colony PCR products of BBa_K4195101_pSB1C3.''' | ||
+ | |||
+ | ====2. Ability of binding Vp0980 on the surface of engineered bacteria==== | ||
+ | |||
+ | We used <partinfo>BBa_I0500</partinfo> promoter and RBS (<partinfo>BBa_B0034</partinfo>) to express ClyA-TTPB protein in ''E. coli'' BL21(DE3). The arabinose-induced overnight culture was then incubated with purified Vp0980-his and FITC-labeled anti-His-tag antibody in turn to verify whether the displayed TTPB could bind Vp0980 or not. | ||
+ | |||
+ | ====3. Ability of binding Vp0980 on the surface of OMVs==== | ||
+ | |||
+ | For the test on OMVs, the OMVs were firstly extracted from the culture of engineered bacteria harboring <partinfo>BBa_K4195121</partinfo> after induction. Subsequently, the OMVs-containing samples were directly spotted onto the nitrocellulose (NC) membrane(''3, 4''). Then the NC membrane was incubated with purified Vp0980-his and anti-His-tag antibody in turn and finally probed by the HRP-conjugated secondary antibody. By comparing the chemiluminescence imaging results of OMVs-containing samples of different origins, we could characterize whether the displayed TTPB on OMVs is functional or not. | ||
+ | |||
+ | |||
+ | ===Reference=== | ||
+ | |||
+ | 1. K. Murase, Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. ''Toxins (Basel) '''14''''', 78 (2022). | ||
+ | |||
+ | 2. M. Hu, H. Zhang, D. Gu, Y. Ma, X. Zhou, Identification of a novel bacterial receptor that binds tail tubular proteins and mediates phage infection of Vibrio parahaemolyticus. ''Emerg Microbes Infect '''9''''', 855-867 (2020). | ||
+ | |||
+ | 3. J. L. Valentine ''et al''., Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies. ''Cell Chem Biol '''23''''', 655-665 (2016). | ||
+ | |||
+ | 4. T. C. Stevenson ''et al''., Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. ''Proc Natl Acad Sci U S A '''115''''', E3106-E3115 (2018). | ||
+ | |||
+ | |||
<!-- --> | <!-- --> |
Revision as of 15:07, 10 October 2022
clyA-ttpB-his
Biology
ClyA
Cytolysin A (ClyA) is a pore-forming toxin that is produced by some bacteria from the Enterobacteriaceae family. When fused to the C-terminal of ClyA, heterologous proteins can be displayed on the surface of the engineered bacteria and OMVs (outer membrane vesicles) released by them (1).
TTPB
TTPB is tail tubular protein B of podophage 7. It has been found that TTPB serves as ligands that recognizes the conserved Vibrio receptor Vp0980 to mediate phage adsorption. It binds with Vp0980 of Vibrio parahaemolyticus and then mediates phage adsorption and subsequent bacterial lysis (2).
Usage and design
Engineering OMVs for treating and preventing AHPND caused by the pathogen V. parahaemolyticus are a significant part of OMEGA project (Operable Magic to Efficiently Getting over AHPND). Based on the efforts of our previous projects in 2020 (AnTea-Glyphosate) and 2021 (SALAGE), we further developed the surface display system on the OMVs released by the engineered bacteria. The usage of cargo proteins were no more limited to enzymes that are usually utilized to catalyze series bio-chemical reactions, since some receptors or ligands involved in complex protein-protein interaction (PPI) were selected as the cargo candidates. This year, we chose two classic anchor proteins, ClyA and INPNC, to construct the display cassette with various cargo proteins including rFET (receptor), rLvAPN1 (receptor), TTPB (ligand) and TTPB (ligand) (Fig. 1). On one hand, with the receptors displayed, OMVs will gain the function of neutralizing toxins secreted by V. parahaemolyticus. On the other hand, with the assistance of ligands displayed on the surface, OMVs will become a special vector to deliver antimicrobials for the specific pathogen. In summary, we have taken a step closer to the collections of extracellular functional elements (EFE), combining the OMVs, secretion systems and surface display systems which we have been dedicated to since 2020. Learn more information from our Design page.
Fig. 1 Graphic description of the expression gene circuits for display cassette designed in OMEGA project.
For this part (ClyA-TTPB-his), TTPB was fused to the C-terminal of ClyA to surface display for targeting V. parahaemolyticus. Arabinose-inducible system was used in the expression circuit of this part in pSB1C3 then constructed composite part BBa_K4195101. We transformed the constructed plasmid into E. coli BL21(DE3) for further verification of its expression and function on the surface of E. coli and OMVs, including the interaction between TTPB and Vp0980.
Characterization
1. Identification
When constructing this circuit, colony PCR and gene sequencing were used to verify that the transformatants were correct. Target bands (4688 bp) can be observed at the position around 5000 bp (Fig. 2).
Fig. 2 DNA gel electrophoresis of the colony PCR products of BBa_K4195101_pSB1C3.
2. Ability of binding Vp0980 on the surface of engineered bacteria
We used BBa_I0500 promoter and RBS (BBa_B0034) to express ClyA-TTPB protein in E. coli BL21(DE3). The arabinose-induced overnight culture was then incubated with purified Vp0980-his and FITC-labeled anti-His-tag antibody in turn to verify whether the displayed TTPB could bind Vp0980 or not.
3. Ability of binding Vp0980 on the surface of OMVs
For the test on OMVs, the OMVs were firstly extracted from the culture of engineered bacteria harboring BBa_K4195121 after induction. Subsequently, the OMVs-containing samples were directly spotted onto the nitrocellulose (NC) membrane(3, 4). Then the NC membrane was incubated with purified Vp0980-his and anti-His-tag antibody in turn and finally probed by the HRP-conjugated secondary antibody. By comparing the chemiluminescence imaging results of OMVs-containing samples of different origins, we could characterize whether the displayed TTPB on OMVs is functional or not.
Reference
1. K. Murase, Cytolysin A (ClyA): A Bacterial Virulence Factor with Potential Applications in Nanopore Technology, Vaccine Development, and Tumor Therapy. Toxins (Basel) 14, 78 (2022).
2. M. Hu, H. Zhang, D. Gu, Y. Ma, X. Zhou, Identification of a novel bacterial receptor that binds tail tubular proteins and mediates phage infection of Vibrio parahaemolyticus. Emerg Microbes Infect 9, 855-867 (2020).
3. J. L. Valentine et al., Immunization with Outer Membrane Vesicles Displaying Designer Glycotopes Yields Class-Switched, Glycan-Specific Antibodies. Cell Chem Biol 23, 655-665 (2016).
4. T. C. Stevenson et al., Immunization with outer membrane vesicles displaying conserved surface polysaccharide antigen elicits broadly antimicrobial antibodies. Proc Natl Acad Sci U S A 115, E3106-E3115 (2018).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 172
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 2166
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 547
Illegal NgoMIV site found at 559
Illegal NgoMIV site found at 1719
Illegal AgeI site found at 1630
Illegal AgeI site found at 1978
Illegal AgeI site found at 2044
Illegal AgeI site found at 2286
Illegal AgeI site found at 2638
Illegal AgeI site found at 2824 - 1000INCOMPATIBLE WITH RFC[1000]Illegal SapI.rc site found at 1963