Difference between revisions of "Part:BBa K2916045"
Konstantinos (Talk | contribs) |
Konstantinos (Talk | contribs) |
||
Line 3: | Line 3: | ||
<partinfo>BBa_K2916045 short</partinfo> | <partinfo>BBa_K2916045 short</partinfo> | ||
− | This part is used for expression of | + | This part is used for expression of Creatine Kinase needed for the OnePot PURE cell-free system. |
<!-- Add more about the biology of this part here--> | <!-- Add more about the biology of this part here--> | ||
Line 10: | Line 10: | ||
Used in OnePot PURE | Used in OnePot PURE | ||
+ | |||
+ | |||
+ | ===Characterization=== | ||
+ | |||
+ | =='''Expression and purification of CK'''== | ||
+ | |||
+ | <br/> | ||
+ | |||
+ | CK is one of the proteins we used for the OnePot PURE cell-free system. We expressed it in M15 E.coli strain using a pQE30 vector. The expression system has a T5 lac operator, RBS and a lambda t0 Terminator, enabling us to regulate the expression with IPTG.<br/><br/> | ||
+ | '''Methods''' | ||
+ | <br/> | ||
+ | |||
+ | CK was purified using our <html><a style="padding: 0px; margin: 0px;" href="https://www.protocols.io/view/protein-purification-for-onepot-pure-cell-free-sys-8auhsew"> protocol </a></html>. To test if the protein was actually expressed, we performed a SDS-PAGE that is presented below. On the left side we can see the results included in the initial OnePot PURE paper (<i>Lavickova et al, 2019</i>) while on the right (batch1_a,b and batch2_a,b) are the solutions we produced ourselves. (The procedure we followed and the conditions of the experiment can be found <html><a style="padding: 0px; margin: 0px;" href="https://www.protocols.io/view/sps-page-protein-electrophoresis-775hrq6"> here</a></html>). | ||
+ | <br/> | ||
+ | |||
+ | <html> | ||
+ | <figure style="text-align:center;"> | ||
+ | <img style="max-width:700px;" src="https://2019.igem.org/wiki/images/b/bb/T--EPFL--ProteinMolec.png" alt="control"> | ||
+ | <figcaption><b>Figure 1:</b> SDS-PAGE of OnePot PURE protein solution.</figcaption> | ||
+ | </figure> | ||
+ | </html> | ||
+ | |||
+ | '''Conclusion''' | ||
+ | <br/> CK has a molecular weight of around 40kDa, but even though we cannot be absolutely sure if the band shown is only due to it, we may assume that it is expressed. To verify the existence and functionality of this protein we need to proceed with more experiments that would be mainly focused on the efficiency of the system. | ||
+ | <br/> | ||
+ | <br/> | ||
+ | |||
+ | =='''OnePot PURE functionality test'''== | ||
+ | |||
+ | |||
+ | <br/> | ||
+ | To make sure that we have all the proteins in our OnePot PURE protein solution, and that they all function properly we need check if proteins can be expressed in our OnePot PURE cell-free system. <br/> | ||
+ | |||
+ | '''Methods'''<br/> | ||
+ | |||
+ | We expressed <html><a style="padding: 0px; margin: 0px;" href="https://parts.igem.org/Part:BBa_I746909"> superfolding GFP</a></html> following the <html><a style="padding: 0px; margin: 0px;" href="https://www.protocols.io/view/protein-expression-in-onepot-pure-cell-free-system-8avhse6"> protocol</a></html> we designed in 10μl reactions, and measured the fluorescence on a plate reader at excitation wavelength of 535nm. We tested the expression using different concentrations of the sf GFP DNA template and also compared it with the fluorescence produced in PURExpress from NEB. | ||
+ | <br/> | ||
+ | |||
+ | |||
+ | <html> | ||
+ | <figure style="text-align:center;"> | ||
+ | <img style="max-width:700px;" src="https://2019.igem.org/wiki/images/b/b2/T--EPFL--resultsOnePot10.png" alt="control"> | ||
+ | <figcaption><b>Figure 2:</b> sf GFP expression using 10nM DNA template.</figcaption> | ||
+ | </figure> | ||
+ | </html> | ||
+ | <html> | ||
+ | <figure style="text-align:center;"> | ||
+ | <img style="max-width:700px;" src="https://2019.igem.org/wiki/images/7/75/T--EPFL--resultsOnePot5.png" alt="control"> | ||
+ | <figcaption><b>Figure 3:</b> sf GFP expression using 5nM DNA template.</figcaption> | ||
+ | </figure> | ||
+ | </html> | ||
+ | <html> | ||
+ | <figure style="text-align:center;"> | ||
+ | <img style="max-width:700px;" src="https://2019.igem.org/wiki/images/e/e7/T--EPFL--resultsOnePot25.png" alt="control"> | ||
+ | <figcaption><b>Figure 4:</b> sf GFP expression using 2.5nM DNA template.</figcaption> | ||
+ | </figure> | ||
+ | </html> | ||
+ | <html> | ||
+ | <figure style="text-align:center;"> | ||
+ | <img style="max-width:700px;" src="https://2019.igem.org/wiki/images/7/70/T--EPFL--resultsOnePot.png" alt="control"> | ||
+ | <figcaption><b>Figure 5:</b> Comparison between OnePot PURE and PURExpress at saturation.</figcaption> | ||
+ | </figure> | ||
+ | </html> | ||
+ | |||
+ | '''Conclusion''' | ||
+ | <br/> The expression was successful so we can confirm that CK exists in our protein solution and is also functioning properly. | ||
+ | <br/> | ||
+ | |||
Revision as of 19:44, 21 October 2019
Expression of CK in E.coli
This part is used for expression of Creatine Kinase needed for the OnePot PURE cell-free system.
Usage and Biology
Used in OnePot PURE
Characterization
Expression and purification of CK
CK is one of the proteins we used for the OnePot PURE cell-free system. We expressed it in M15 E.coli strain using a pQE30 vector. The expression system has a T5 lac operator, RBS and a lambda t0 Terminator, enabling us to regulate the expression with IPTG.
Methods
CK was purified using our protocol . To test if the protein was actually expressed, we performed a SDS-PAGE that is presented below. On the left side we can see the results included in the initial OnePot PURE paper (Lavickova et al, 2019) while on the right (batch1_a,b and batch2_a,b) are the solutions we produced ourselves. (The procedure we followed and the conditions of the experiment can be found here).
Conclusion
CK has a molecular weight of around 40kDa, but even though we cannot be absolutely sure if the band shown is only due to it, we may assume that it is expressed. To verify the existence and functionality of this protein we need to proceed with more experiments that would be mainly focused on the efficiency of the system.
OnePot PURE functionality test
To make sure that we have all the proteins in our OnePot PURE protein solution, and that they all function properly we need check if proteins can be expressed in our OnePot PURE cell-free system.
Methods
We expressed superfolding GFP following the protocol we designed in 10μl reactions, and measured the fluorescence on a plate reader at excitation wavelength of 535nm. We tested the expression using different concentrations of the sf GFP DNA template and also compared it with the fluorescence produced in PURExpress from NEB.
Conclusion
The expression was successful so we can confirm that CK exists in our protein solution and is also functioning properly.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal AgeI site found at 974
- 1000COMPATIBLE WITH RFC[1000]