Difference between revisions of "Part:BBa K2549023"
(→Biology) |
|||
Line 12: | Line 12: | ||
<!-- Add more about the biology of this part here --> | <!-- Add more about the biology of this part here --> | ||
===Biology=== | ===Biology=== | ||
− | |||
− | |||
− | |||
=====Previous reported engineered zinc finger-based transcription factors===== | =====Previous reported engineered zinc finger-based transcription factors===== | ||
Lohmueller JJ et al have reported a tunable zinc finger-based transcription framework in mammalian cells<ref>A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Lohmueller JJ, Armel TZ, Silver PA. Nucleic Acids Res, 2012 Jun;40(11):5180-7 PMID: 22323524; DOI: 10.1093/nar/gks142</ref>. | Lohmueller JJ et al have reported a tunable zinc finger-based transcription framework in mammalian cells<ref>A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Lohmueller JJ, Armel TZ, Silver PA. Nucleic Acids Res, 2012 Jun;40(11):5180-7 PMID: 22323524; DOI: 10.1093/nar/gks142</ref>. | ||
Line 28: | Line 25: | ||
[[File:ZF2.jpg|none|240px|thumb|Collins JJ et al stated: ''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | [[File:ZF2.jpg|none|240px|thumb|Collins JJ et al stated: ''sTFs constructed from OPEN-engineered ZFs are orthogonal to one another. sTF43-8 activated noncognate Promoter21-16 due to the fortuitous creation of a sequence that is significantly similar to the binding sequence of 43-8, when the downstream BamHI restriction site is considered.'']] | ||
+ | |||
+ | ===Characterization=== | ||
+ | =====It works as we designed.===== | ||
+ | [[File:aTF-test.png|none|480px|thumb|'''Fig.1 Interaction between transcriptional activators and their binding sites. A degradable EGFP (d2EGFP) is linked downstream the promoter to indicate the expression level of it. DBD, DNA binding domain which is zinc finger in our assay. AD or SD, activating- or silencing-form transcriptional domain. RE, responsive elements. MFI, median fluorescence intensity.''']] | ||
+ | |||
+ | Flow cytometry results suggest that the transcriptional activators can effectively activate the responsive promoters with high specificity and high orthogonality. | ||
+ | |||
+ | [[File:ORgate.png|none|480px|thumb|'''Fig.2 OR gate based on 8*ZF21.16-minCMV. A degradable EGFP (d2EGFP) is linked downstream the promoter to indicate the expression level of it. DBD, DNA binding domain which is zinc finger in our assay. AD or SD, activating- or silencing-form transcriptional domain. RE, responsive elements. RFI, relative fluorescence intensity.''']] | ||
+ | |||
+ | Flow cytometry results indicate that when at least one of the transcriptional activators exist the expression of the promoter can be activated. | ||
Line 34: | Line 41: | ||
<partinfo>BBa_K2549023 parameters</partinfo> | <partinfo>BBa_K2549023 parameters</partinfo> | ||
--> | --> | ||
+ | |||
===References=== | ===References=== |
Revision as of 13:47, 17 October 2018
ZF21.16-VP64
This part is one of the downstream elements of our amplifier. Zinc finger 21.16 (Part:BBa_K2549046) is a synthetic engineered DNA binding domain with high sequence specificity and high orthogonality with other zinc finger proteins. VP64 (Part:BBa_K2549057) is a tetrameric VP16 transcription activator which shows ultrahigh transcription activation function. A SV40NLS domain (Part:BBa_K2549054) is placed on the N terminal of VP64 to guide the fusion protein to enter in the nucleus. A G4S linker (Part:BBa_K2549053) is set between ZF21.16 and SV40NLS. This part can also be utilized by other iGEM teams as zinc finger-based transcription activators to construct their own genetic circuits.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BamHI site found at 304
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Biology
Previous reported engineered zinc finger-based transcription factors
Lohmueller JJ et al have reported a tunable zinc finger-based transcription framework in mammalian cells[1].
Artificial zinc fingers with modular DNA-binding domains
Collins JJ et al have reported a synthetic biology framework based on orthogonal artificial zinc fingers[2].
Characterization
It works as we designed.
Flow cytometry results suggest that the transcriptional activators can effectively activate the responsive promoters with high specificity and high orthogonality.
Flow cytometry results indicate that when at least one of the transcriptional activators exist the expression of the promoter can be activated.
References
- ↑ A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Lohmueller JJ, Armel TZ, Silver PA. Nucleic Acids Res, 2012 Jun;40(11):5180-7 PMID: 22323524; DOI: 10.1093/nar/gks142
- ↑ A synthetic biology framework for programming eukaryotic transcription functions. Khalil AS, Lu TK, Bashor CJ, ..., Joung JK, Collins JJ. Cell, 2012 Aug;150(3):647-58 PMID: 22863014; DOI: 10.1016/j.cell.2012.05.045