Difference between revisions of "Part:BBa K2332312"

Line 71: Line 71:
 
This gene was given to the UCL iGEM team 2017 by Prof. Stephen Price (UCL, not part of iGEM) after we searched for cadherin proteins suitable for our project. However, no sequence was known of the plasmid we were given and we sequenced the  plasmid ourselves. Consecutive BLAST analysis showed a 99% similarity with Mus musculus cadherin 1 (Cdh1), mRNA: NCBI Reference Sequence: NM_009864.3, [https://www.ncbi.nlm.nih.gov/nuccore/NM_009864 NCBI].
 
This gene was given to the UCL iGEM team 2017 by Prof. Stephen Price (UCL, not part of iGEM) after we searched for cadherin proteins suitable for our project. However, no sequence was known of the plasmid we were given and we sequenced the  plasmid ourselves. Consecutive BLAST analysis showed a 99% similarity with Mus musculus cadherin 1 (Cdh1), mRNA: NCBI Reference Sequence: NM_009864.3, [https://www.ncbi.nlm.nih.gov/nuccore/NM_009864 NCBI].
  
[[File:E-cadherin (Preproprotein BLAST).png|700px|thumb|left|'''Figure 2: BLAST Results from E-cadherin. [https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=smart01055 Cadherin_pro]- Cadherin proteins are activated through cleavage of a prosequence in the late Golgi. This prevents cadherin aggregation in the early stage of the secretory pathway. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions.''' ]]
+
[[File:E-cadherin (Preproprotein BLAST).png|700px|thumb|left|'''Figure 2: BLAST Results from E-cadherin. /n [https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?ascbin=8&maxaln=10&seltype=2&uid=smart01055 Cadherin_pro]- Cadherin proteins are activated through cleavage of a prosequence in the late Golgi. This prevents cadherin aggregation in the early stage of the secretory pathway. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions.''' ]]
  
  

Revision as of 10:22, 8 October 2017


E-cadherin (Preproprotein, Mus Musculus)

E-cadherin (Preproprotein, Mus Musculus)
Function Cell-Cell Adhesion
Use in Mammalian cells
Chassis Tested Chinese Hamster Ovary (CHO)
Abstraction Hierarchy Part
RFC standard RFC10 & RFC23 compatible
Backbone pSB1C3
Submitted by [http://2017.igem.org/Team:UCL]

This gene encodes E-cadherin, a calcium-dependent cell adhesion molecule that functions in the establishment and maintenance of epithelial cell morphology during embryongenesis and adulthood. The encoded preproprotein undergoes proteolytic processing to generate a mature protein.


Usage and Biology

Cadherin proteins are a family of cell adhesion proteins with over 120 members.

Figure 1: Adherens Junction - Cadherin Mediated Cell-Cell Adhesion.

















UCSF iGEM 2011 has created a BioBrick of only the extracellular domain of E-Cadherin (Mouse) BBa_K644000 but no BioBrick encoding the full E-cadherin protein has been submitted until now. BBa_K644000 also lacked detailed characterisation and the source was imprecise. Furthermore, we know now that E-cadherin requires interaction of its cytosolic domain for the production of stable cell-cell connections. (see Alberts 6th Ed. 2015, Ch. 19, p. 1040).

This gene was given to the UCL iGEM team 2017 by Prof. Stephen Price (UCL, not part of iGEM) after we searched for cadherin proteins suitable for our project. However, no sequence was known of the plasmid we were given and we sequenced the plasmid ourselves. Consecutive BLAST analysis showed a 99% similarity with Mus musculus cadherin 1 (Cdh1), mRNA: NCBI Reference Sequence: NM_009864.3, NCBI.

Figure 2: BLAST Results from E-cadherin. /n Cadherin_pro- Cadherin proteins are activated through cleavage of a prosequence in the late Golgi. This prevents cadherin aggregation in the early stage of the secretory pathway. This domain corresponds to the folded region of the prosequence, and is termed the prodomain. The prodomain shows structural resemblance to the cadherin domain, but lacks all the features known to be important for cadherin-cadherin interactions.



Three silent mutations were added into the sequence via side directed mutagenesis in order to remove one EcoRI and two PstI sites. Afterwards we sequence confirmed the entire gene.







Experimental approach

Vector Considerations

For testing this coding part we used pcDNA3, a standard mammalian expression plasmid, as a vector. We, thereby, created BBa_K2332313, our E-cadherin gene flanked by a CMV promoter and a bGH poly(A) tail. The pre-existing 5'- and 3'-UTR and the strong promoter ensure efficient expression of E-cadherin after transfection.

Chassis Considerations

Choosing the correct chassis for your experiments is of equal importance to choosing the correct gene.

Since we wanted to test cell-cell aggregation induced by the E-cadherin gene, we therefore chose a mammalian cell line that naturally does not express E-cadherin and is commonly used in cadherin research, Chinese Hamster Ovary (CHO) cells. Even though they naturally lack E-cadherin expression they still maintain alpha- and beta-catenin expression, the two proteins that are essential for E-cadherin's connection to the actin cortex of the cell.


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 2550
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 752
    Illegal BamHI site found at 828
    Illegal BamHI site found at 944
    Illegal BamHI site found at 1868
    Illegal BamHI site found at 2170
    Illegal XhoI site found at 1552
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 208
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 65
    Illegal BsaI site found at 465
    Illegal BsaI site found at 872
    Illegal BsaI site found at 1414
    Illegal BsaI.rc site found at 306



Functional Parameters

Protein data table for BioBrick BBa_ automatically created by the BioBrick-AutoAnnotator version 1.0
Nucleotide sequence in RFC 10: (underlined part encodes the protein)
 AGCTTGGTACCTCCACCATGGGAGCC ... GAGGACGACTAGA
 ORF from nucleotide position 18 to 2669 (excluding stop-codon)
Amino acid sequence: (RFC 25 scars in shown in bold, other sequence features underlined; both given below)

101 
201 
301 
401 
501 
601 
701 
801 
MGARCRSFSALLLLLQVSSWLCQELEPESCSPGFSSEVYTFPVPEGHLERGHVLGRVRFEGCTGRPRTAFFSEDSRFKVATDGTITVKRHLKLHKLETSF
LVRARDSSHRELSTKVTLKSMGHHHHRHHHRDPASESNPELLMFPSVYPGLRRQKRDWVIPPISCPENEKGEFPKNLVQIKSNRDKETKVFYSITGQGAD
KPPVGVFIIERETGWLKVTQPLDREAIAKYILYSHAVSSNGEAVEDPMEIVITVTDQNDNRPEFTQEVFEGSVAEGAVPGTSVMKVSATDADDDVNTYNA
AIAYTIVSQDPELPHKNMFTVNRDTGVISVLTSGLDRESYPTYTLVVQAADLQGEGLSTTAKAVITVKDINDNAPVFNPSTYQGQVPENEVNARIATLKV
TDDDAPNTPAWKAVYTVVNDPDQQFVVVTDPTTNDGILKTAKGLDFEAKQQYILHVRVENEEPFEGSLVPSTATVTVDVVDVNEAPIFMPAERRVEVPED
FGVGQEITSYTAREPDTFMDQKITYRIWRDTANWLEINPETGAIFTRAEMDREDAEHVKNSTYVALIIATDDGSPIATGTGTLLLVLLDVNDNAPIPEPR
NMQFCQRNPQPHIITILDPDLPPNTSPFTAELTHGASVNWTIEYNDAAQESLILQPRKDLEIGEYKIHLKLADNQNKDQVTTLDVHVCDCEGTVNNCMKA
GIVAAGLQVPAILGILGGILALLILILLLLLFLRRRTVVKEPLLPPDDDTRDNVYYYDEEGGGEEDQDFDLSQLHRGLDARPEVTRNDVAPTLMSVPQYR
PRPANPDEIGNFIDENLKAADSDPTAPPYDSLLVFDYEGSGSEAASLSSLNSSESDQDQDYDYLNEWGNRFKKLADMYGGGEDD*
Sequence features: (with their position in the amino acid sequence, see the list of supported features)
RFC25 scar (shown in bold): 63 to 64, 195 to 196
Amino acid composition:
Ala (A)61 (6.9%)
Arg (R)45 (5.1%)
Asn (N)43 (4.9%)
Asp (D)72 (8.1%)
Cys (C)9 (1.0%)
Gln (Q)32 (3.6%)
Glu (E)67 (7.6%)
Gly (G)52 (5.9%)
His (H)21 (2.4%)
Ile (I)44 (5.0%)
Leu (L)75 (8.5%)
Lys (K)35 (4.0%)
Met (M)13 (1.5%)
Phe (F)30 (3.4%)
Pro (P)60 (6.8%)
Ser (S)53 (6.0%)
Thr (T)65 (7.4%)
Trp (W)8 (0.9%)
Tyr (Y)26 (2.9%)
Val (V)73 (8.3%)
Amino acid counting
Total number:884
Positively charged (Arg+Lys):80 (9.0%)
Negatively charged (Asp+Glu):139 (15.7%)
Aromatic (Phe+His+Try+Tyr):85 (9.6%)
Biochemical parameters
Atomic composition:C4330H6765N1179O1382S22
Molecular mass [Da]:98156.7
Theoretical pI:4.67
Extinction coefficient at 280 nm [M-1 cm-1]:82740 / 83303 (all Cys red/ox)
Plot for hydrophobicity, charge, predicted secondary structure, solvent accessability, transmembrane helices and disulfid bridges 
Codon usage
Organism:E. coliB. subtilisS. cerevisiaeA. thalianaP. patensMammals
Codon quality (CAI):good (0.70)good (0.70)acceptable (0.59)good (0.68)excellent (0.83)good (0.79)
Alignments (obtained from PredictProtein.org)
   There were no alignments for this protein in the data base. The BLAST search was initialized and should be ready in a few hours.
Predictions (obtained from PredictProtein.org)
   There were no predictions for this protein in the data base. The prediction was initialized and should be ready in a few hours.
The BioBrick-AutoAnnotator was created by TU-Munich 2013 iGEM team. For more information please see the documentation.
If you have any questions, comments or suggestions, please leave us a comment.