Difference between revisions of "Part:BBa K1890001"
Line 12: | Line 12: | ||
where it catalyzes the condensation of silica to form the typical skeletal elements. | where it catalyzes the condensation of silica to form the typical skeletal elements. | ||
Here, we use the enzyme to create a polysilicate layer around the host organism <i>E. coli</i> (Figure 1). | Here, we use the enzyme to create a polysilicate layer around the host organism <i>E. coli</i> (Figure 1). | ||
− | The gene is fused to the transmembrane domain of | + | The gene is fused to the transmembrane domain of INP in order to display the protein at the cell membrane. |
This biobrick was expressed in a backbone containing the inducible Lac-promoter. | This biobrick was expressed in a backbone containing the inducible Lac-promoter. | ||
<html> | <html> |
Revision as of 20:48, 17 October 2016
Silicatein gene, fused to transmembrane domain of INP, with strong RBS
Introduction
Silicatein, originating from the demosponge Suberites domuncula, catalyzes the formation of polysilicate. This biobrick contains the short version of the silicatein gene, according to Müller et al [1][2]. The gene is fused to the transmembrane domain of ice nucleation protein (INP) from Pseudomonas syringae [3]. The coding sequence in this BioBrick is combined with the strong RBS BBa_B0034.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 98
Illegal NgoMIV site found at 431 - 1000COMPATIBLE WITH RFC[1000]
Usage and Biology
Silicatein is an enzyme natively found in demosponges and diatoms, where it catalyzes the condensation of silica to form the typical skeletal elements. Here, we use the enzyme to create a polysilicate layer around the host organism E. coli (Figure 1). The gene is fused to the transmembrane domain of INP in order to display the protein at the cell membrane. This biobrick was expressed in a backbone containing the inducible Lac-promoter.
Characterization
In order to characterize the formation of a polysilicate layer around E. coli, we performed the following experiments.
- Rhodamine 123 staining
- Growth study
Staining with Rhodamine 123
In this experiment we imaged the silicatein expressing cells with a fluorescence microscope, after treating them with a fluorescent dye. The fluorescent dye Rhodamine 123 (Sigma) has shown to bind specifically to polysilicate [4]. Cells were stained according to the protocol based on Li et al. and Müller et al. [4][5]. Rhodamine was excited with a wavelength of 395 nm.
We cannot distinguish a clear difference between silicatein and the negative control. The entire medium is fluorescent, which causes overexposure of the camera at high excitation intensity. This might mean that the Rhodamine is not specifically located at the cell walls, but still dissolved in the medium. Wedo see some fluorescence localized at the cells, but the diference between the fluorescence of the medium and the cells is much smaller than we observed for OmpA-Silicatein. Therefore, we cannot conclude that the strains transformed with silicatein and INP-silicatein are able to synthesize a polysilicate layer around the cell.
Viability
Since the silicatein expressing cells are to cover themselves in polysilicate, their nutrient supply might be limited by diffusion, which can eventually result in cell death. To investigate whether this is indeed the case, a growth study was performed (Figure 3). Cells were grown overnight in selective LB. They were transfered to fresh medium and grown until in exponential phase. Then IPTG was added to induce expression. After a subsequent incubation of three hours, the medium was supplemented with silicic acid as substrate for silicatein. During the following five hours samples were taken, of which a 10-6 dilution was plated on selective LB plates. Colony forming units (cfu) were counted the day after. As a negative control, cells expressing another type of silicatein BBa_K1890002, not supplemented with silicic acid were used.
This figure suggests that either the polysilicate layer inhibits nutrient diffusion into the cell, or the sodium silicate has a detrimental effect on growth.
References
[1] Müller, W. E. G., Engel, S., Wang, X., Wolf, S. E., Tremel, W., Thakur, N. L., … Schröder, H. C. (2008). Bioencapsulation of living bacteria (Escherichia coli) with poly(silicate) after transformation with silicatein-α gene. Biomaterials, 29(7), 771–779.
[2] Müller, W. E. G. (2003). Silicon biomineralization.
[3] Kim, E., & Yoo, S. (1998). Cell surface display of CD8 ecto domain on Escherichia coli using ice nucleation protein, 12(3), 197–201.
[4] Li, C. W., Chu, S., & Lee, M. (1989). Characterizing the silica deposition vesicle of diatoms. Protoplasma, 151(2-3), 158–163.
[5] Müller, W. E. G., Rothenberger, M., Boreiko, A., Tremel, W., Reiber, A., & Schröder, H. C. (2005). Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 321(2), 285–297.