Difference between revisions of "Part:BBa K525311"
Line 1: | Line 1: | ||
− | |||
__NOTOC__ | __NOTOC__ | ||
<partinfo>BBa_K525311 short</partinfo> | <partinfo>BBa_K525311 short</partinfo> | ||
− | + | Fusion protein of S-layer SgsE and firefly luciferase. | |
+ | |||
+ | S-layers (crystalline bacterial surface layer) are crystal-like layers consisting of multiple protein monomers and can be found in various (archae-)bacteria. They constitute the outermost part of the cell wall. Especially their ability for self-assembly into distinct geometries is of scientific interest. At phase boundaries, in solutions and on a variety of surfaces they form different lattice structures. The geometry and arrangement is determined by the C-terminal self assembly-domain, which is specific for each S-layer protein. The most common lattice geometries are oblique, square and hexagonal. By modifying the characteristics of the S-layer through combination with functional groups and protein domains as well as their defined position and orientation to eachother (determined by the S-layer geometry) it is possible to realize various practical applications ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr ''et al.'', 2007]). | ||
− | |||
===Usage and Biology=== | ===Usage and Biology=== | ||
+ | S-layer proteins can be used as scaffold for nanobiotechnological applications and devices by e.g. fusing the S-layer's self-assembly domain to other functional protein domains. It is possible to coat surfaces and liposomes with S-layers. A big advantage of S-layers: after expressing in ''E. coli'' and purification, the nanobiotechnological system is cell-free. This enhances the biological security of a device. | ||
+ | |||
+ | This S-layer fusion protein is used to characterize purification methods and immobilization behaviour of enzymes fused to an S-layer. | ||
+ | |||
+ | |||
+ | ===Important parameters=== | ||
+ | <center> | ||
+ | {|{{Table}} | ||
+ | !Experiment | ||
+ | !Characteristic | ||
+ | !Result | ||
+ | |- | ||
+ | |rowspan="3"|[[Part:BBa_K525305#Expression_in_E._coli | Expression (''E. coli'')]] | ||
+ | |Localisation | ||
+ | |Inclusion body | ||
+ | |- | ||
+ | |Compatibility | ||
+ | |''E. coli'' KRX and BL21(DE3) | ||
+ | |- | ||
+ | |Induction of expression | ||
+ | |expression of T7 polymerase + IPTG or lactose | ||
+ | |- | ||
+ | |rowspan="3"|[[Part:BBa_K525305#Purification_of_SgsE_fusion_protein | Purification]] | ||
+ | |Molecular weight | ||
+ | |110.2 kDa | ||
+ | |- | ||
+ | |Theoretical pI | ||
+ | |5.74 | ||
+ | |- | ||
+ | |Reporter | ||
+ | |Luminescence | ||
+ | |- | ||
+ | |rowspan="2"|Immobilization behaviour | ||
+ | |Immobilization time | ||
+ | |4 h | ||
+ | |- | ||
+ | |} | ||
+ | </center> | ||
+ | |||
<!-- --> | <!-- --> |
Revision as of 19:31, 21 September 2011
Fusion Protein of S-Layer SgsE and Firefly-Luciferase
Fusion protein of S-layer SgsE and firefly luciferase.
S-layers (crystalline bacterial surface layer) are crystal-like layers consisting of multiple protein monomers and can be found in various (archae-)bacteria. They constitute the outermost part of the cell wall. Especially their ability for self-assembly into distinct geometries is of scientific interest. At phase boundaries, in solutions and on a variety of surfaces they form different lattice structures. The geometry and arrangement is determined by the C-terminal self assembly-domain, which is specific for each S-layer protein. The most common lattice geometries are oblique, square and hexagonal. By modifying the characteristics of the S-layer through combination with functional groups and protein domains as well as their defined position and orientation to eachother (determined by the S-layer geometry) it is possible to realize various practical applications ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr et al., 2007]).
Usage and Biology
S-layer proteins can be used as scaffold for nanobiotechnological applications and devices by e.g. fusing the S-layer's self-assembly domain to other functional protein domains. It is possible to coat surfaces and liposomes with S-layers. A big advantage of S-layers: after expressing in E. coli and purification, the nanobiotechnological system is cell-free. This enhances the biological security of a device.
This S-layer fusion protein is used to characterize purification methods and immobilization behaviour of enzymes fused to an S-layer.
Important parameters
Experiment | Characteristic | Result |
---|---|---|
Expression (E. coli) | Localisation | Inclusion body |
Compatibility | E. coli KRX and BL21(DE3) | |
Induction of expression | expression of T7 polymerase + IPTG or lactose | |
Purification | Molecular weight | 110.2 kDa |
Theoretical pI | 5.74 | |
Reporter | Luminescence | |
Immobilization behaviour | Immobilization time | 4 h |
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 167
Illegal BglII site found at 1022 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 76
Illegal AgeI site found at 4054 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1657
Illegal SapI.rc site found at 3211