Difference between revisions of "Part:BBa K525405"

 
Line 1: Line 1:
 
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K525405 short</partinfo>
 
<partinfo>BBa_K525405 short</partinfo>
  
Fusion Protein of S-Layer sbpA and mCitrine  
+
Fusion Protein of S-Layer SbpA and mCitrine  
 +
 
 +
S-layers (crystalline bacterial surface layer) are crystal-like layers consisting of multiple protein monomers and can be found in various (archae-)bacteria. They constitute the outermost part of the cell wall. Especially their ability for self-assembly into distinct geometries is of scientific interest. At phase boundaries, in solutions and on a variety of surfaces they form different lattice structures. The geometry and arrangement is determined by the C-terminal self assembly-domain, which is specific for each S-layer protein. The most common lattice geometries are oblique, square and hexagonal. By modifying the characteristics of the S-layer through combination with functional groups and protein domains as well as their defined position and orientation to eachother (determined by the S-layer geometry) it is possible to realize various practical applications ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr ''et al.'', 2007]).
 +
 
  
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
 +
S-layer proteins can be used as scaffold for nanobiotechnological applications and devices by e.g. fusing the S-layer's self-assembly domain to other functional protein domains. It is possible to coat surfaces and liposomes with S-layers. A big advantage of S-layers: after expressing in ''E. coli'' and purification, the nanobiotechnological system is cell-free. This enhances the biological security of a device.
 +
 +
This fluorescent S-layer fusion protein is used to characterize purification methods and the S-layer's ability to self-assemble on surfaces. It is also possible to use the characteristic of mCitrine as a pH indicator ([http://pubs.acs.org/doi/abs/10.1021/bm901071b Kainz ''et al.'', 2010]).
 +
 +
 +
===Important parameters===
 +
<center>
 +
{|{{Table}}
 +
!Experiment
 +
!Characteristic
 +
!Result
 +
|-
 +
|rowspan="3"|[[Part:BBa_K525305/Expression | Expression (''E. coli'')]]
 +
|Localisation
 +
|Inclusion body
 +
|-
 +
|Compatibility
 +
|''E. coli'' KRX and BL21(DE3)
 +
|-
 +
|Inductor for expression
 +
|IPTG, lactose
 +
|-
 +
|rowspan="2"|[[Part:BBa_K525305/Purification | Purification]]
 +
|Molecular weight
 +
|~ 130 kDa
 +
|-
 +
|Excitation / emission
 +
|515 / 529 nm
 +
|-
 +
|rowspan="2"|[[Part:BBa_K525305#Immobilization_behaviour | Immobilization behaviour]]
 +
|Saturation protein / bead ratio
 +
|7 - 9 * 10<sup>-4</sup>
 +
|-
 +
|Immobilization time
 +
|?
 +
|-
 +
|}
 +
</center>
 +
  
 
<!-- -->
 
<!-- -->

Revision as of 15:18, 13 September 2011

Fusion Protein of S-Layer SbpA and mCitrine

Fusion Protein of S-Layer SbpA and mCitrine

S-layers (crystalline bacterial surface layer) are crystal-like layers consisting of multiple protein monomers and can be found in various (archae-)bacteria. They constitute the outermost part of the cell wall. Especially their ability for self-assembly into distinct geometries is of scientific interest. At phase boundaries, in solutions and on a variety of surfaces they form different lattice structures. The geometry and arrangement is determined by the C-terminal self assembly-domain, which is specific for each S-layer protein. The most common lattice geometries are oblique, square and hexagonal. By modifying the characteristics of the S-layer through combination with functional groups and protein domains as well as their defined position and orientation to eachother (determined by the S-layer geometry) it is possible to realize various practical applications ([http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2006.00573.x/full Sleytr et al., 2007]).


Usage and Biology

S-layer proteins can be used as scaffold for nanobiotechnological applications and devices by e.g. fusing the S-layer's self-assembly domain to other functional protein domains. It is possible to coat surfaces and liposomes with S-layers. A big advantage of S-layers: after expressing in E. coli and purification, the nanobiotechnological system is cell-free. This enhances the biological security of a device.

This fluorescent S-layer fusion protein is used to characterize purification methods and the S-layer's ability to self-assemble on surfaces. It is also possible to use the characteristic of mCitrine as a pH indicator ([http://pubs.acs.org/doi/abs/10.1021/bm901071b Kainz et al., 2010]).


Important parameters

Experiment Characteristic Result
Expression (E. coli) Localisation Inclusion body
Compatibility E. coli KRX and BL21(DE3)
Inductor for expression IPTG, lactose
Purification Molecular weight ~ 130 kDa
Excitation / emission 515 / 529 nm
Immobilization behaviour Saturation protein / bead ratio 7 - 9 * 10-4
Immobilization time ?


Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 104
    Illegal BglII site found at 221
    Illegal XhoI site found at 1996
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 76
    Illegal AgeI site found at 3913
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 493
    Illegal BsaI.rc site found at 622