Difference between revisions of "Part:BBa K4260111"

(References)
(References)
Line 26: Line 26:
  
 
Gierach, I., Li, J., Wu, W. Y., Grover, G. J., & Wood, D. W. (2012). Bacterial biosensors for screening isoform-selective ligands for human thyroid receptors α-1 and β-1. FEBS open bio, 2, 247-253.
 
Gierach, I., Li, J., Wu, W. Y., Grover, G. J., & Wood, D. W. (2012). Bacterial biosensors for screening isoform-selective ligands for human thyroid receptors α-1 and β-1. FEBS open bio, 2, 247-253.
 
Ozawa, T., & Umezawa, Y. (2001). Detection of protein–protein interactions in vivo based on protein splicing. Current opinion in chemical biology, 5(5), 578-583.
 
  
 
Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in microbiology, 5, 63.
 
Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in microbiology, 5, 63.
 
Tornabene, P., Trapani, I., Minopoli, R., Centrulo, M., Lupo, M., de Simone, S., ... & Auricchio, A. (2019). Intein-mediated protein trans-splicing expands adeno-associated virus transfer capacity in the retina. Science translational medicine, 11(492), eaav4523.
 
  
 
Shah, N. H., & Muir, T. W. (2014). Inteins: nature's gift to protein chemists. Chemical science, 5(2), 446-461.
 
Shah, N. H., & Muir, T. W. (2014). Inteins: nature's gift to protein chemists. Chemical science, 5(2), 446-461.
Line 38: Line 34:
  
 
Davis, E. O., Sedgwick, S. G., & Colston, M. J. (1991). Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. Journal of bacteriology, 173(18), 5653-5662.
 
Davis, E. O., Sedgwick, S. G., & Colston, M. J. (1991). Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. Journal of bacteriology, 173(18), 5653-5662.
 
Mills, K. V., Lew, B. M., Jiang, S. Q., & Paulus, H. (1998). Protein splicing in trans by purified N-and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proceedings of the National Academy of Sciences, 95(7), 3543-3548.
 
 
Ozawa, T., Takeuchi, M., Kaihara, A., Sato, M., & Umezawa, Y. (2001). Protein splicing-based reconstitution of split green fluorescent protein for monitoring protein− protein interactions in bacteria: Improved sensitivity and reduced screening time. Analytical chemistry, 73(24), 5866-5874.
 
  
 
<!-- Uncomment this to enable Functional Parameter display  
 
<!-- Uncomment this to enable Functional Parameter display  

Revision as of 06:34, 30 September 2022


RecA mini intein mediated ESR1 protein with OmpA signal peptide, linker and AmilCP.

This part encodes an intein mediated biosensor, consisting of a divided AmilCP chromoprotein gene, a mutated intein RecA N-terminal and C-terminal domains and a ESR1 Ligand Binding Domain. The RecA intein comes from Mycobacterium Tuberculosis (Mtu) which has been mutated with the purpose of making it more stable.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design

Fig.x:RecA intein behavior when an EDC is present.

This RecA intein ESR1 biosensor consists of two inteins capable of joining and separating from two protein fragments. Considering this, the ESR1 biosensor gene coding for the hERalpha protein was introduced with its respective linker, in such a way that when an endocrine disruptor binds to the biosensor, the inteins join and separate with the rest of the protein, removing the linker, the biosensor and the two inteins. The two endogenous fragments encode the chromoprotein AmilCP [BBa_K592009].

RecA intein was build from the first 110 and last 58 aminoacids from the wildtype RecA full-lenght intein. Moreover two aminoacid mutationes (Val67Leu and Asp111Glu) to make the RecA intein a stable protein.

Usage, Composition and Biology

References

Wood, D. W., Wu, W., Belfort, G., Derbyshire, V., & Belfort, M. (1999). A genetic system yields self-cleaving inteins for bioseparations. Nature biotechnology, 17(9), 889-892.

Gierach, I., Li, J., Wu, W. Y., Grover, G. J., & Wood, D. W. (2012). Bacterial biosensors for screening isoform-selective ligands for human thyroid receptors α-1 and β-1. FEBS open bio, 2, 247-253.

Costa, S., Almeida, A., Castro, A., & Domingues, L. (2014). Fusion tags for protein solubility, purification and immunogenicity in Escherichia coli: the novel Fh8 system. Frontiers in microbiology, 5, 63.

Shah, N. H., & Muir, T. W. (2014). Inteins: nature's gift to protein chemists. Chemical science, 5(2), 446-461.

Shingledecker, K., Jiang, S. Q., & Paulus, H. (1998). Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene, 207(2), 187-195.

Davis, E. O., Sedgwick, S. G., & Colston, M. J. (1991). Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. Journal of bacteriology, 173(18), 5653-5662.