Difference between revisions of "Part:BBa K2684006"
Line 26: | Line 26: | ||
<p><img src="https://static.igem.org/mediawiki/2018/8/87/T--SHSBNU_China--21001.jpg" style="width:50%"/></image></p> | <p><img src="https://static.igem.org/mediawiki/2018/8/87/T--SHSBNU_China--21001.jpg" style="width:50%"/></image></p> | ||
<p class="pic_text">Reaction stock leftover in experiment</p> | <p class="pic_text">Reaction stock leftover in experiment</p> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</div> | </div> | ||
</body> | </body> | ||
</html> | </html> |
Revision as of 12:03, 17 October 2018
CsgA-SpyTag
CsgA fused with SpyTag by 2xGGGGS linker
Sequence and Features
Assembly Compatibility:
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Period - CsgA - SpyTag
Gene csgA found in the genome of MG1655 wild type is capable of forming biofilm. Using CRISPR, we knocked out gene csgA on MG1655’s genome creating ΔMG1655 strain. The cell ΔMG1655 would then be used as chassis cell. Gene csgA was fused into plasmid pET28a. The CsgA sequence was improved from Part BBa_K1583000. We added a SpyTag sequence which fused after csgA gene, creating csgA-spytag (BBa_K2684006). With SpyTag, CotA laccase can be fixed onto the biofilm by forming a covalent bond SpyTag-SpyCatcher.Reaction stock leftover in experiment