Difference between revisions of "Part:BBa K2549038"
(→Boolean logic gates via split zinc finger-based transcription factors) |
(→Biology) |
||
Line 12: | Line 12: | ||
<!-- Add more about the biology of this part here --> | <!-- Add more about the biology of this part here --> | ||
===Biology=== | ===Biology=== | ||
− | |||
− | |||
− | |||
=====Boolean logic gates via split zinc finger-based transcription factors===== | =====Boolean logic gates via split zinc finger-based transcription factors===== | ||
Lohmueller JJ et al have demonstrated the split ZF-TF reconstitution process. Please note that we used Cfa split intein ([[Part:BBa_K2549009]] and [[Part:BBa_K2549010]]) but not dnaB reported below. | Lohmueller JJ et al have demonstrated the split ZF-TF reconstitution process. Please note that we used Cfa split intein ([[Part:BBa_K2549009]] and [[Part:BBa_K2549010]]) but not dnaB reported below. | ||
Line 23: | Line 20: | ||
[[File:zfNAND.jpeg|none|400px|thumb|Lohmueller JJ et al demonstrated: ''For NAND gates, the computational module splices a ZF repressor, and the logical operation is computed as TRUE as long as both inputs are not present together. For the response data shown BCR_ABL-1:GCN4 repressor split fragments were used and the response promoter contains 6 copies of the BCR_ABL target site. CFP expression was measured by flow cytometry and expressed as fold change over an off-target expression control.'']] | [[File:zfNAND.jpeg|none|400px|thumb|Lohmueller JJ et al demonstrated: ''For NAND gates, the computational module splices a ZF repressor, and the logical operation is computed as TRUE as long as both inputs are not present together. For the response data shown BCR_ABL-1:GCN4 repressor split fragments were used and the response promoter contains 6 copies of the BCR_ABL target site. CFP expression was measured by flow cytometry and expressed as fold change over an off-target expression control.'']] | ||
+ | |||
+ | ===Characterization=== | ||
+ | ====It works as we designed.==== | ||
+ | [[File:ANDNAND.png|none|480px|thumb|'''CfaC intein-based AND gate and NAND gate. A degradable EGFP (d2EGFP) is linked downstream the promoter to indicate the expression level of it. DBD, DNA binding domain which is zinc finger in our assay. AD or SD, activating- or silencing-form transcriptional domain. RE, responsive elements. RFI, relative fluorescence intensity.''']] | ||
+ | |||
+ | These results were obtained using flow cytometry. As for the AND gate, when coexpressed with VP64-ZF21.16N-CfaN, the expression level of d2EGFP is relatively turned up compared to circumstances that they're not coexpressed. While for the NAND gate, when coexpressed with KRAB-ZF21.16N-CfaN, the expression of d2EGFP is relatively repressed. | ||
+ | |||
+ | |||
Revision as of 12:15, 17 October 2018
CfaC-ZF21.16C-NLS
This part is one of the downstream elements of our amplifier. It was constructed by fusing CfaC (Part:BBa_K2549010), ZF21.16C (Part:BBa_K2549012) and NLS (Part:BBa_K2549054), from N terminal to C terminal. CfaC is the C-terminal fragment of Cfa which is a consensus sequence from an alignment of 73 naturally occurring DnaE inteins that are predicted to have fast splicing rates. ZF21.16C is the C-terminal fragment of the zinc finger whose recognition helices for three-finger arrays are substituted by the reported synthetic zinc finger 21.16 residues on the basis of the BCR_ABL-1 artificial zinc finger[1]. NLS is a short nuclear location sequence from SV40 large T antigen. When coexpressed with VP64-ZF21.16N-CfaN (Part:BBa_K2549036) in the same cell, both fusions will be produced and a transcription activating function will be executed. Also, when coexpressed with KRAB-ZF21.16N-CfaN (Part:BBa_K2549037) in the same cell, both fusions will be produced formed and a transcription repressing function will be executed.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 91
Illegal SapI.rc site found at 21
Biology
Boolean logic gates via split zinc finger-based transcription factors
Lohmueller JJ et al have demonstrated the split ZF-TF reconstitution process. Please note that we used Cfa split intein (Part:BBa_K2549009 and Part:BBa_K2549010) but not dnaB reported below.
Characterization
It works as we designed.
These results were obtained using flow cytometry. As for the AND gate, when coexpressed with VP64-ZF21.16N-CfaN, the expression level of d2EGFP is relatively turned up compared to circumstances that they're not coexpressed. While for the NAND gate, when coexpressed with KRAB-ZF21.16N-CfaN, the expression of d2EGFP is relatively repressed.
References
- ↑ A tunable zinc finger-based framework for Boolean logic computation in mammalian cells. Lohmueller JJ, Armel TZ, Silver PA. Nucleic Acids Res, 2012 Jun;40(11):5180-7 PMID: 22323524; DOI: 10.1093/nar/gks142