Part:BBa_K2549010
split intein Cfa C
This part is the C-terminal fragment of Cfa. Split intein is a useful protein engineering approach to combine signals[1][2]. Cfa is a consensus sequence from an alignment of 73 naturally occurring DnaE inteins that are predicted to have fast splicing rates. Cfa demonstrates both rapid protein splicing and unprecedented thermal and chaotropic durability[3][4][5]. The 122-124 residues of Cfa is mutated from EKD to GEP, which has been proved to imbue ultrafast DnaE split inteins with minimal extein dependence, thus improving split Intein-mediated protein cyclization[6]. CfaC is used in our amplifier to accomplish some complex logic functions. It can also be used by other iGEM teams to assembly their intein-based protein libraries.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 91
Illegal SapI.rc site found at 21
Biology
Protein trans-splicing
Protein trans-splicing is a remarkable biological process, whereby a full-length protein is reconstituted from two fragments through the formation of a peptide bond. It is a post-translational autoprocessing event.
CfaN and CfaC reported in Stevens AJ et al 2016
Note: Part:BBa_K2549009 and Part:BBa_K2549010 have the same Biology section.
References
- ↑ Protein trans-splicing and its use in structural biology: opportunities and limitations. Volkmann G, Iwaï H. Mol Biosyst, 2010 Nov;6(11):2110-21 PMID: 20820635; DOI: 10.1039/c0mb00034e
- ↑ Cell-Based Biosensors Based on Intein-Mediated Protein Engineering for Detection of Biologically Active Signaling Molecules. Jeon H, Lee E, Kim D, ..., Kim S, Kwon Y. Anal Chem, 2018 Aug;90(16):9779-9786 PMID: 30028129; DOI: 10.1021/acs.analchem.8b01481
- ↑ Improved protein splicing using embedded split inteins. Gramespacher JA, Stevens AJ, Thompson RE, Muir TW. Protein Sci, 2018 Mar;27(3):614-619 PMID: 29226478; DOI: 10.1002/pro.3357
- ↑ Design of a Split Intein with Exceptional Protein Splicing Activity. Stevens AJ, Brown ZZ, Shah NH, ..., Cowburn D, Muir TW. J Am Chem Soc, 2016 Feb;138(7):2162-5 PMID: 26854538; DOI: 10.1021/jacs.5b13528
- ↑ A promiscuous split intein with expanded protein engineering applications. Stevens AJ, Sekar G, Shah NH, ..., Cowburn D, Muir TW. Proc Natl Acad Sci U S A, 2017 Aug;114(32):8538-8543 PMID: 28739907; DOI: 10.1073/pnas.1701083114
- ↑ A promiscuous split intein with expanded protein engineering applications. Stevens AJ, Sekar G, Shah NH, ..., Cowburn D, Muir TW. Proc Natl Acad Sci U S A, 2017 Aug;114(32):8538-8543 PMID: 28739907; DOI: 10.1073/pnas.1701083114
None |