Difference between revisions of "Part:BBa E1010"

Line 16: Line 16:
  
 
'''iGEM11_Uppsala-Sweden:''' Expression of chromoproteins. The images above show ''E coli'' constitutively expressing amilCP <partinfo>BBa_K592009</partinfo> (blue), amilGFP <partinfo>BBa_K592010</partinfo> (yellow) and RFP <partinfo>BBa_E1010</partinfo> (red).  
 
'''iGEM11_Uppsala-Sweden:''' Expression of chromoproteins. The images above show ''E coli'' constitutively expressing amilCP <partinfo>BBa_K592009</partinfo> (blue), amilGFP <partinfo>BBa_K592010</partinfo> (yellow) and RFP <partinfo>BBa_E1010</partinfo> (red).  
 +
 +
Peking iGEM 2016 has fused this part with triple spytag. The fused protein is participate in Peking’s polymer network. By adding this protein, the whole polymer network become visible in most conditions. If you want to learn more about Peking’s polymer network and the role of mRFP in this network, please click here https://parts.igem.org/Part:BBa_K1989004".
  
  

Revision as of 13:17, 19 October 2016

**highly** engineered mutant of red fluorescent protein from Discosoma striata (coral)

monomeric RFP: Red Fluorescent Protein. Excitation peak: 584 nm Emission peak: 607 nm

Usage and Biology

Robert E. Campbell started with Discosoma RFP (DsRed) and evolved a faster folding, monomeric variant. See paper listed in source. Codon optimized for expression in bacteria (?? DE)

AmilCP amilGFP RFP.jpg On cultures BYR small.jpg Pellets BYR.jpg

iGEM11_Uppsala-Sweden: Expression of chromoproteins. The images above show E coli constitutively expressing amilCP BBa_K592009 (blue), amilGFP BBa_K592010 (yellow) and RFP BBa_E1010 (red).

Peking iGEM 2016 has fused this part with triple spytag. The fused protein is participate in Peking’s polymer network. By adding this protein, the whole polymer network become visible in most conditions. If you want to learn more about Peking’s polymer network and the role of mRFP in this network, please click here https://parts.igem.org/Part:BBa_K1989004".


Sequence and Features


Barcodes are discontinued, but one was appended to the sequence of this part. Composite parts using this part will include the barcode. More ...

Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal AgeI site found at 555
    Illegal AgeI site found at 667
  • 1000
    COMPATIBLE WITH RFC[1000]

Parts table

Protein data table for BioBrick BBa_E1010 automatically created by the BioBrick-AutoAnnotator version 1.0
Nucleotide sequence in RFC 10: (underlined part encodes the protein)
 ATGGCTTCC ... ACCGGTGCTTAATAACGCTGATAGTGCTAGTGTAGATCGC
 ORF from nucleotide position 1 to 675 (excluding stop-codon)
Amino acid sequence: (RFC 25 scars in shown in bold, other sequence features underlined; both given below)

101 
201 
MASSEDVIKEFMRFKVRMEGSVNGHEFEIEGEGEGRPYEGTQTAKLKVTKGGPLPFAWDILSPQFQYGSKAYVKHPADIPDYLKLSFPEGFKWERVMNFE
DGGVVTVTQDSSLQDGEFIYKVKLRGTNFPSDGPVMQKKTMGWEASTERMYPEDGALKGEIKMRLKLKDGGHYDAEVKTTYMAKKPVQLPGAYKTDIKLD
ITSHNEDYTIVEQYERAEGRHSTGA*
Sequence features: (with their position in the amino acid sequence, see the list of supported features)
None of the supported features appeared in the sequence
Amino acid composition:
Ala (A)12 (5.3%)
Arg (R)9 (4.0%)
Asn (N)4 (1.8%)
Asp (D)14 (6.2%)
Cys (C)0 (0.0%)
Gln (Q)8 (3.6%)
Glu (E)22 (9.8%)
Gly (G)23 (10.2%)
His (H)5 (2.2%)
Ile (I)9 (4.0%)
Leu (L)12 (5.3%)
Lys (K)22 (9.8%)
Met (M)9 (4.0%)
Phe (F)10 (4.4%)
Pro (P)12 (5.3%)
Ser (S)12 (5.3%)
Thr (T)14 (6.2%)
Trp (W)3 (1.3%)
Tyr (Y)11 (4.9%)
Val (V)14 (6.2%)
Amino acid counting
Total number:225
Positively charged (Arg+Lys):31 (13.8%)
Negatively charged (Asp+Glu):36 (16.0%)
Aromatic (Phe+His+Try+Tyr):29 (12.9%)
Biochemical parameters
Atomic composition:C1135H1749N299O347S9
Molecular mass [Da]:25423.7
Theoretical pI:5.65
Extinction coefficient at 280 nm [M-1 cm-1]:32890 / 32890 (all Cys red/ox)
Plot for hydrophobicity, charge, predicted secondary structure, solvent accessability, transmembrane helices and disulfid bridges 
Codon usage
Organism:E. coliB. subtilisS. cerevisiaeA. thalianaP. patensMammals
Codon quality (CAI):excellent (0.84)good (0.72)good (0.68)good (0.74)good (0.78)good (0.71)
Alignments (obtained from PredictProtein.org)
SwissProt:Q9U6Y8 (86% identity on 221 AAs), P83690 (63% identity on 215 AAs)
TrEML:Q5S3G8 (95% identity on 225 AAs), D0VWW2 (94% identity on 220 AAs)
PDB:2h5q (94% identity on 216 AAs), 2qlg (94% identity on 215 AAs)
Predictions (obtained from PredictProtein.org)
Subcellular Localization (reliability in brackets)
Archaea:secreted (100%)
Bacteria:cytosol (52%)
Eukarya:cytosol (20%)
Gene Ontology (reliability in brackets)
Molecular Function Ontology: -
Biological Process Ontology:GO:0018298 (40%), GO:0008218 (27%)
 
Predicted features:
Disulfid bridges: -
Transmembrane helices: -
The BioBrick-AutoAnnotator was created by TU-Munich 2013 iGEM team. For more information please see the documentation.
If you have any questions, comments or suggestions, please leave us a comment.