Difference between revisions of "Part:BBa K5237005"

 
(10 intermediate revisions by 3 users not shown)
Line 4: Line 4:
 
<partinfo>BBa_K5237005</partinfo>
 
<partinfo>BBa_K5237005</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<!--Add changes below--->
 
<!--Add changes below--->
 
<html>
 
<html>
Line 29: Line 28:
 
     border: 0.5px solid black;
 
     border: 0.5px solid black;
 
     border-collapse: collapse;
 
     border-collapse: collapse;
 +
    padding: 5px;
 
   }
 
   }
  
   th,
+
   .thumbcaption {
   td {
+
    text-align: justify !important;
     padding: 1.5px;
+
  }
 +
 
 +
 
 +
  a[href ^="https://"],
 +
   .link-https {
 +
    background: none !important;
 +
     padding-right: 0px !important;
 
   }
 
   }
 
</style>
 
</style>
Line 39: Line 45:
 
<body>
 
<body>
 
   <!-- Part summary -->
 
   <!-- Part summary -->
   <section id="1">
+
   <section>
 
     <h1>
 
     <h1>
 
       Half staple: TetR
 
       Half staple: TetR
 
     </h1>
 
     </h1>
     <p>The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator widely, that specifically binds to the
+
     <p>
       tetO operator sequence, repressing transcription of downstream genes in the absence of tetracycline or its
+
      The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. TetR can be
       derivatives. Upon tetracycline binding, dissociating fromthe tetO operator and allowing transcription to proceed.
+
       readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part
       Due to its robust and reversible regulation, tetR is widely adopted in synthetic biology application for
+
       as a component of our simple staple (<a href="https://parts.igem.org/Part:BBa_K5237006">BBa_K5237006</a>), and
       engineered circuits in prokaryotic and eukaryotic systems.</p>
+
       also fused it to
     <p>&nbsp;</p>
+
       mNeonGreen as part of a FRET readout system (<a href="https://parts.igem.org/Part:BBa_K5237007">BBa_K5237007</a>).
 +
    </p>
 +
     <p>
 +
    <p> </p>
 +
    </p>
 
   </section>
 
   </section>
   <div id="toc" class="toc">
+
   <div class="toc" id="toc">
 
     <div id="toctitle">
 
     <div id="toctitle">
 
       <h1>Contents</h1>
 
       <h1>Contents</h1>
Line 56: Line 66:
 
     <ul>
 
     <ul>
 
       <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
 
       <li class="toclevel-1 tocsection-1"><a href="#1"><span class="tocnumber">1</span> <span class="toctext">Sequence
             overview</span></a>
+
             Overview</span></a>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
 
       <li class="toclevel-1 tocsection-2"><a href="#2"><span class="tocnumber">2</span> <span class="toctext">Usage and
Line 62: Line 72:
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
 
       <li class="toclevel-1 tocsetction-3"><a href="#3"><span class="tocnumber">3</span> <span class="toctext">Assembly
             and part evolution</span></a>
+
             and Part Evolution</span></a>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
       <li class="toclevel-1 tocsection-5"><a href="#4"><span class="tocnumber">4</span> <span
 
             class="toctext">Results</span></a>
 
             class="toctext">Results</span></a>
 +
        <ul>
 +
          <li class="toclevel-2 tocsection-4"><a href="#4.1"><span class="tocnumber">4.1</span> <span
 +
                class="toctext">Protein Expression and Mobility Shift Assay</span></a>
 +
          </li>
 +
          <li class="toclevel-2 tocsection-5"><a href="#4.2"><span class="tocnumber">4.2</span> <span
 +
                class="toctext"><i>In Silico</i> Characterization using DaVinci</span></a>
 +
          </li>
 +
        </ul>
 
       </li>
 
       </li>
 
       <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
 
       <li class="toclevel-1 tocsection-8"><a href="#5"><span class="tocnumber">5</span> <span
Line 73: Line 91:
 
   </div>
 
   </div>
 
   <section>
 
   <section>
 +
    <p><br /><br /></p>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
 
     <font size="5"><b>The PICasSO Toolbox </b> </font>
    <p><br></p>
+
     <div class="thumb" style="margin-top:10px;"></div>
     <div class="thumb"></div>
+
     <div class="thumbinner" style="width:550px"><img alt="" class="thumbimage"
     <div class="thumbinner" style="width:550px"><img alt=""
+
 
         src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
 
         src="https://static.igem.wiki/teams/5237/wetlab-results/registry-part-collection-engineering-cycle-example-overview.svg"
         style="width:99%;" class="thumbimage">
+
         style="width:99%;" />
 
       <div class="thumbcaption">
 
       <div class="thumbcaption">
         <i><b>Figure 1: Example how the part collection can be used to engineer new staples</b></i>
+
         <i><b>Figure 1: How our part collection can be used to engineer new staples</b></i>
 
       </div>
 
       </div>
 
     </div>
 
     </div>
    </div>
 
 
 
 
     <p>
 
     <p>
       <br>
+
       <br />
       The 3D organization of the genome plays a crucial role in regulating gene expression in eukaryotic cells,
+
       While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the <b>3D
       impacting cellular behavior, evolution, and disease. Beyond the linear DNA sequence, the spatial arrangement of
+
        spatial organization</b> of DNA is well-known to be an important layer of information encoding in
      chromatin, influenced by DNA-DNA interactions, shapes pathways of gene regulation. However, the tools to precisely
+
      particular in eukaryotes, playing a crucial role in
       manipulate this genomic architecture remain limited, rendering it challenging to explore the full potential of the
+
      gene regulation and hence
       3D genome in synthetic biology. We - iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular
+
       cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the
       toolbox based on various DNA-binding proteins to address this issue.
+
       genomic spatial
 
+
      architecture are limited, hampering the exploration of
 +
       3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a
 +
       <b>powerful
 +
        molecular toolbox for rationally engineering genome 3D architectures</b> in living cells, based on
 +
      various DNA-binding proteins.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
 
       The <b>PICasSO</b> part collection offers a comprehensive, modular platform for precise manipulation and
       re-programming
+
       <b>re-programming
      of DNA-DNA interactions using protein staples in living cells, enabling researchers to recreate natural 3D genomic
+
        of DNA-DNA interactions</b> using engineered "protein staples" in living cells. This enables
       interactions, such as enhancer hijacking, or to design entirely new spatial architectures for gene regulation.
+
      researchers to recreate naturally occurring alterations of 3D genomic
       Beyond its versatility, PICasSO includes robust assay systems to support the engineering, optimization, and
+
       interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for
       testing of new staples, ensuring functionality <i>in vitro</i> and <i>in vivo</i>. We took special care to include
+
      artificial gene regulation and cell function control.
       parts crucial for testing every step of the cycle (design, build, test, learn) when engineering new parts
+
       Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic
 +
      loci into
 +
      spatial proximity.
 +
      To unlock the system's full potential, we introduce versatile <b>chimeric CRISPR/Cas complexes</b>,
 +
      connected either at
 +
      the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are
 +
      referred to as protein- or Cas staples, respectively. Beyond its
 +
      versatility with regard to the staple constructs themselves, PICasSO includes <b>robust assay</b> systems to
 +
      support the engineering, optimization, and
 +
       testing of new staples <i>in vitro</i> and <i>in vivo</i>. Notably, the PICasSO toolbox was developed in a
 +
       design-build-test-learn <b>engineering cycle closely intertwining wet lab experiments and computational
 +
        modeling</b> and iterated several times, yielding a collection of well-functioning and -characterized
 +
      parts.
 
     </p>
 
     </p>
    <!-- Picture explaining parts collection -->
+
     <p>At its heart, the PICasSO part collection consists of three categories. <br /><b>(i)</b> Our <b>DNA-binding
    <!-- below text not finished formatting-->
+
        proteins</b>
     <p>At its heart, the PICasSO part collection consists of three categories. (i) Our <b>DNA-binding proteins</b>
+
 
       include our
 
       include our
       finalized enhancer hijacking Cas staple as well as half staples that can be used by scientists to compose entirely
+
       finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as
       new Cas staples in the future. We also include our simple staples that serve as controls for successful stapling
+
      "half staples" that can be combined by scientists to compose entirely
       and can be further engineered to create alternative, simpler and more compact staples. (ii) As <b>functional
+
       new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple
        elements</b>, we list additional parts that enhance the functionality of our Cas and Basic staples. These
+
      and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for
       consist of
+
      successful stapling
       protease-cleavable peptide linkers and inteins that allow condition-specific, dynamic stapling <i>in vivo</i>.
+
       and can be further engineered to create alternative, simpler, and more compact staples. <br />
       Besides staple functionality, we also include the parts to enable the efficient delivery of PICasSO's with our
+
      <b>(ii)</b> As <b>functional elements</b>, we list additional parts that enhance and expand the
       interkingdom conjugation system.
+
      functionality of our Cas and
    </p>
+
      Basic staples. These
    <p>
+
       consist of staples dependent on
      (iii) As the final component of our collection, we provide parts that support the use of our <b>custom readout
+
       cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific,
         systems</b>. These include components of our established FRET-based proximity assay system, enabling users to
+
      dynamic stapling <i>in vivo</i>.
 +
       We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into
 +
      target cells, including mammalian cells,
 +
      with our new
 +
       interkingdom conjugation system. <br />
 +
      <b>(iii)</b> As the final category of our collection, we provide parts that underlie our <b>custom
 +
        readout
 +
         systems</b>. These include components of our established FRET-based proximity assay system, enabling
 +
      users to
 
       confirm
 
       confirm
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system for functional
+
       accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a
       readout via a luciferase reporter, which allows for straightforward experimental simulation of enhancer hijacking.
+
       luciferase reporter, which allows for straightforward experimental assessment of functional enhancer
 +
      hijacking events
 +
      in mammalian cells.
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       The following table gives a complete overview of all parts in our PICasSO toolbox. The highlighted parts showed
+
       The following table gives a comprehensive overview of all parts in our PICasSO toolbox. <mark
      exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the
+
        style="background-color: #FFD700; color: black;">The highlighted parts showed
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their
+
        exceptional performance as described on our iGEM wiki and can serve as a reference.</mark> The other
       own custom Cas staples, enabling further optimization and innovation
+
      parts in
 +
      the
 +
       collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer
 +
      their
 +
       own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome
 +
      engineering.<br />
 
     </p>
 
     </p>
 
     <p>
 
     <p>
       <font size="4"><b>Our parts collection includes:</b></font><br>
+
       <font size="4"><b>Our part collection includes:</b></font><br />
 
     </p>
 
     </p>
 
+
     <table style="width: 90%; padding-right:10px;">
     <table style="width: 90%;">
+
       <td align="left" colspan="3"><b>DNA-Binding Proteins: </b>
       <td colspan="3" align="left"><b>DNA-binding proteins: </b>
+
         Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions <i>in vivo</i>
         The building blocks for engineering of custom staples for DNA-DNA interactions with a modular system ensuring
+
      </td>
        easy assembly.</td>
+
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237000" target="_blank">BBa_K5237000</a></td>
           <td>fgRNA Entryvector MbCas12a-SpCas9</td>
+
           <td>Fusion Guide RNA Entry Vector MbCas12a-SpCas9</td>
           <td>Entryvector for simple fgRNA cloning via SapI</td>
+
           <td>Entry vector for simple fgRNA cloning via SapI</td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237001" target="_blank">BBa_K5237001</a></td>
           <td>Half-Staple: dMbCas12a-Nucleoplasmin NLS</td>
+
           <td>Staple Subunit: dMbCas12a-Nucleoplasmin NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with fgRNA and dCas9 </td>
+
           <td>Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
 +
          </td>
 
         </tr>
 
         </tr>
         <tr>
+
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237002" target="_blank">BBa_K5237002</a></td>
           <td>Half-Staple: SV40 NLS-dSpCas9-SV40 NLS</td>
+
           <td>Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with our fgRNA or dCas12a
+
           <td>Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237003" target="_blank">BBa_K5237003</a></td>
           <td>Cas-Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
+
           <td>Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS</td>
           <td>Functional Cas staple that can be combined with sgRNA or fgRNA to bring two DNA strands in close proximity
+
           <td>Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into
 +
            close
 +
            proximity
 
           </td>
 
           </td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237004" target="_blank">BBa_K5237004</a></td>
           <td>Half-Staple: Oct1-DBD</td>
+
           <td>Staple Subunit: Oct1-DBD</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with TetR.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237005" target="_blank">BBa_K5237005</a></td>
           <td>Half-Staple: TetR</td>
+
           <td>Staple Subunit: TetR</td>
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br>
+
           <td>Staple subunit that can be combined to form a functional staple, for example with Oct1.<br />
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
             Can also be combined with a fluorescent protein as part of the FRET proximity assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237006" target="_blank">BBa_K5237006</a></td>
           <td>Simple-Staple: TetR-Oct1</td>
+
           <td>Simple Staple: TetR-Oct1</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
           <td>Functional staple that can be used to bring two DNA strands in close proximity</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237007" target="_blank">BBa_K5237007</a></td>
           <td>Half-Staple: GCN4</td>
+
           <td>Staple Subunit: GCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237008" target="_blank">BBa_K5237008</a></td>
           <td>Half-Staple: rGCN4</td>
+
           <td>Staple Subunit: rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
           <td>Staple subunit that can be combined to form a functional staple, for example with rGCN4</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237009" target="_blank">BBa_K5237009</a></td>
           <td>Mini-Staple: bGCN4</td>
+
           <td>Mini Staple: bGCN4</td>
 
           <td>
 
           <td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
             Assembled staple with minimal size that can be further engineered</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Functional elements: </b>
+
       <td align="left" colspan="3"><b>Functional Elements: </b>
         Protease cleavable peptide linkers and inteins are used to control and modify staples for further optimization
+
         Protease-cleavable peptide linkers and inteins are used to control and modify staples for further
         for custom applications.</td>
+
        optimization
 +
         for custom applications</td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237010" target="_blank">BBa_K5237010</a></td>
           <td>Cathepsin B-Cleavable Linker (GFLG)</td>
+
           <td>Cathepsin B-cleavable Linker: GFLG</td>
           <td>Cathepsin B cleavable peptide linker, that can be used to combine two staple subunits ,to make responsive
+
           <td>Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make
 +
            responsive
 
             staples</td>
 
             staples</td>
 
         </tr>
 
         </tr>
Line 209: Line 258:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237011" target="_blank">BBa_K5237011</a></td>
 
           <td>Cathepsin B Expression Cassette</td>
 
           <td>Cathepsin B Expression Cassette</td>
           <td>Cathepsin B which can be selectively express to cut the cleavable linker</td>
+
           <td>Expression cassette for the overexpression of cathepsin B</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370012" target="_blank">BBa_K5237012</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237012" target="_blank">BBa_K5237012</a></td>
 
           <td>Caged NpuN Intein</td>
 
           <td>Caged NpuN Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuN split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             units</td>
+
            activation, which can be used to create functionalized staple
 +
             subunits</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370013" target="_blank">BBa_K5237013</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237013" target="_blank">BBa_K5237013</a></td>
 
           <td>Caged NpuC Intein</td>
 
           <td>Caged NpuC Intein</td>
           <td>Undergoes protein transsplicing after protease activation, can be used to create functionalized staple
+
           <td>A caged NpuC split intein fragment that undergoes protein <i>trans</i>-splicing after protease
             units</td>
+
            activation, which can be used to create functionalized staple
 +
             subunits</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370014" target="_blank">BBa_K5237014</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237014" target="_blank">BBa_K5237014</a></td>
           <td>fgRNA processing casette</td>
+
           <td>Fusion Guide RNA Processing Casette</td>
           <td>Processing casette to produce multiple fgRNAs from one transcript, can be used for multiplexing</td>
+
           <td>Processing cassette to produce multiple fgRNAs from one transcript, that can be used for
 +
            multiplexed 3D
 +
            genome reprogramming</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td><a href="https://parts.igem.org/Part:BBa_K52370015" target="_blank">BBa_K5237015</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237015" target="_blank">BBa_K5237015</a></td>
 
           <td>Intimin anti-EGFR Nanobody</td>
 
           <td>Intimin anti-EGFR Nanobody</td>
           <td>Interkindom conjugation between bacteria and mammalian cells, as alternative delivery tool for large
+
           <td>Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for
 +
            large
 
             constructs</td>
 
             constructs</td>
 +
        </tr>
 +
        <tr>
 +
          <td><a href="https://parts.igem.org/Part:BBa_K4643003" target="_blank">BBa_K4643003</a></td>
 +
          <td>IncP Origin of Transfer</td>
 +
          <td>Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a
 +
            means of
 +
            delivery</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
       <td colspan="3" align="left"><b>Readout Systems: </b>
+
       <td align="left" colspan="3"><b>Readout Systems: </b>
         FRET and enhancer recruitment to measure proximity of stapled DNA in bacterial and mammalian living cells
+
         FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and
        enabling swift testing and easy development for new systems.</td>
+
        mammalian cells
 +
      </td>
 
       <tbody>
 
       <tbody>
 
         <tr bgcolor="#FFD700">
 
         <tr bgcolor="#FFD700">
           <td><a href="https://parts.igem.org/Part:BBa_K52370016" target="_blank">BBa_K5237016</a></td>
+
           <td><a href="https://parts.igem.org/Part:BBa_K5237016" target="_blank">BBa_K5237016</a></td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
 
           <td>FRET-Donor: mNeonGreen-Oct1</td>
           <td>Donor part for the FRET assay binding the Oct1 binding cassette. Can be used to visualize DNA-DNA
+
           <td>FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to
 +
            visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 248: Line 312:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237017" target="_blank">BBa_K5237017</a></td>
 
           <td>FRET-Acceptor: TetR-mScarlet-I</td>
 
           <td>FRET-Acceptor: TetR-mScarlet-I</td>
           <td>Acceptor part for the FRET assay binding the TetR binding cassette. Can be used to visualize DNA-DNA
+
           <td>Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize
 +
            DNA-DNA
 
             proximity</td>
 
             proximity</td>
 
         </tr>
 
         </tr>
Line 254: Line 319:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237018" target="_blank">BBa_K5237018</a></td>
 
           <td>Oct1 Binding Casette</td>
 
           <td>Oct1 Binding Casette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
Line 260: Line 325:
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237019" target="_blank">BBa_K5237019</a></td>
 
           <td>TetR Binding Cassette</td>
 
           <td>TetR Binding Cassette</td>
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET
+
           <td>DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the
 +
            FRET
 
             proximity assay</td>
 
             proximity assay</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237020" target="_blank">BBa_K5237020</a></td>
         <td>Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64</td>
+
         <td>Cathepsin B-Cleavable <i>Trans</i>-Activator: NLS-Gal4-GFLG-VP64</td>
         <td>Readout system that responds to protease activity. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
         </tr>
+
         </td>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237021" target="_blank">BBa_K5237021</a></td>
 
           <td>NLS-Gal4-VP64</td>
 
           <td>NLS-Gal4-VP64</td>
           <td>Trans-activating enhancer, that can be used to simulate enhancer hijacking. </td>
+
           <td><i>Trans</i>-activating enhancer, that can be used to simulate enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
 
         <td><a href="https://parts.igem.org/Part:BBa_K5237022" target="_blank">BBa_K5237022</a></td>
         <td>mCherry Expression Cassette: UAS, minimal Promotor, mCherry</td>
+
         <td>mCherry Expression Cassette: UAS, minimal Promoter, mCherry</td>
         <td>Readout system for enhancer binding. It was used to test Cathepsin-B cleavable linker.</td>
+
         <td>Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker</td>
        </tr>
+
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237023" target="_blank">BBa_K5237023</a></td>
           <td>Oct1 - UAS binding casette</td>
+
           <td>Oct1 - 5x UAS Binding Casette</td>
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay.</td>
+
           <td>Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay</td>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
 
           <td><a href="https://parts.igem.org/Part:BBa_K5237024" target="_blank">BBa_K5237024</a></td>
           <td>Minimal promoter Firefly luciferase</td>
+
           <td>TRE-minimal Promoter- Firefly Luciferase</td>
           <td>Contains Firefly luciferase controlled by a minimal promoter. It was used as a luminescence readout for
+
           <td>Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence
             simulated enhancer hijacking.</td>
+
            readout for
 +
             simulated enhancer hijacking</td>
 
         </tr>
 
         </tr>
 
       </tbody>
 
       </tbody>
 
     </table>
 
     </table>
    </p>
 
 
   </section>
 
   </section>
 
   <section id="1">
 
   <section id="1">
Line 297: Line 362:
  
 
</html>
 
</html>
 
 
<!--################################-->
 
<!--################################-->
<span class='h3bb'>Sequence and Features</span>
+
<span class="h3bb">Sequence and Features</span>
 
<partinfo>BBa_K5237005 SequenceAndFeatures</partinfo>
 
<partinfo>BBa_K5237005 SequenceAndFeatures</partinfo>
 
<!--################################-->
 
<!--################################-->
 
 
<html>
 
<html>
 
  
 
<body>
 
<body>
Line 311: Line 373:
 
     <p>
 
     <p>
 
       The tetracycline repressor protein (tetR) is naturally present in gram-negative bacteria and is involved in the
 
       The tetracycline repressor protein (tetR) is naturally present in gram-negative bacteria and is involved in the
       resistance mechanism against tetracycline (and derivatives). It does so by tightly controlling the gene expression
+
       resistance mechanism against tetracycline (and derivatives). It tightly controls gene expression
 
       of <i>tetA</i>, which encodes an efflux pump responsible for removing tetracycline from the cell.
 
       of <i>tetA</i>, which encodes an efflux pump responsible for removing tetracycline from the cell.
       TetR binds selectively to two plaindromic recognition sequences (<i>tetO</i>>1,2) with high affinity. For DNA
+
       TetR binds selectively to two palindromic recognition sequences (<i>tetO</i>&gt;1,2) with high affinity. For DNA
       binding to occur tetR adopts a homodimeric structure and binds with two &#945;-helix-turn- &#945;-helix motifs
+
       binding to occur TetR adopts a homodimeric structure and binds with two α-helix-turn-α-helix motifs
       (HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline or its analogs, tetR undergoes a
+
       (HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline, TetR undergoes a
       conformational change, which prevents it from binding to DNA, therby allowing gene expression(Orth <i>et al.</i>
+
       conformational change, which prevents it from binding to DNA, thereby allowing gene expression (Orth <i>et al.</i>
      <!--doi.org/10.1038/73324-->
+
       2000; Kisker <i>et al.</i> 1995).
       2000; Kisker <i>et al.</i> 1995).<!--10.1006/jmbi.1994.0138-->
+
       <br />
       <br>
+
       Due to its robust and highly regulatable DNA-binding properties, TetR has become a widely adopted tool in
       Due to its robust and highly regulatable DNA-binding properties, tetR has become a widely adopted tool in
+
 
       synthetic
 
       synthetic
 
       biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it
 
       biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it
       an essential element in the development of gene regulation systems (Berens & Hillen, 2004).
+
       an essential element in the development of gene regulation systems (Berens &amp; Hillen, 2004).
      <!---->
+
       <br />
       <br>
+
       Because of its well-characterized behavior, TetR was integrated into our design of a modular DNA-stapling system.
       In our project, tetR was integrated into the design of a modular DNA-stapling system because of its
+
    </p>
      well-characterized behavior, ensuring reliable DNA interactions.
+
 
   </section>
 
   </section>
 
   <section id="3">
 
   <section id="3">
     <h1>3. Assembly and part evolution</h1>
+
     <h1>3. Assembly and Part Evolution</h1>
 
     <p>TetR was C-terminally fused to create a tetR-mScarlet-I-His<sub>6</sub>.</p>
 
     <p>TetR was C-terminally fused to create a tetR-mScarlet-I-His<sub>6</sub>.</p>
 +
    <p><!--Better formulation needed-->
 +
      As part of developing a Förster Resonance Energy Transfer (FRET) assay, a modified version of TetR was
 +
      created.
 +
      Based on previous studies that successfully engineered single-chain TetR (scTetR) proteins with unaltered DNA
 +
      binding, we
 +
      genetically fused two TetR proteins together with a flexible (G<sub>4</sub>S)<sub>6</sub> linker (Krueger <i>et
 +
        al.</i> 2003; Zhou <i>et al.</i> 2007).
 +
      Unfortunately, under the T7 promoter system we tested, the expression levels were insufficient for further
 +
      experimental use.
 +
      (More information can be found on our <a href="https://2024.igem.wiki/heidelberg" target="_blank">Wiki</a> or the
 +
      <a href="https://parts.igem.org/Part:BBa_K5237017">tetR-mScarlet-I</a> composite part)
 +
    </p>
 
   </section>
 
   </section>
 
   <section id="4">
 
   <section id="4">
 
     <h1>4. Results</h1>
 
     <h1>4. Results</h1>
     <p> The fusion protein was expressed from a T7 based expression plasmid and subsequently
+
     <section id="4.1">
      purified using metal affinity chromatography with Ni-NTA beads.(Figure 1, left)
+
      <h2>4.1 Protein Expression and Mobility Shift Assay</h2>
      DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay
+
      <p> The fusion protein was expressed from a T7 based expression plasmid and subsequently
      (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM
+
        purified using metal affinity chromatography with Ni-NTA beads (Fig. 1, left).
      EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl).
+
        DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay
    <div class="thumb">
+
        (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1
      <div class="thumbinner" style="width:60%">
+
        mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl).
        <div style="display: flex; justify-content: center; border:none;" >
+
      <div class="thumb">
          <div style="border:none;">
+
        <div class="thumbinner" style="width:62%">
            <a href="Fig2_left">
+
          <div style="display: flex; justify-content: center; border:none;">
              <img alt="SDS-PAGE-tetR-mScI"
+
            <div style="border:none;">
                src="https://static.igem.wiki/teams/5237/wetlab-results/sds-page-tetr-msc-expression-01.svg"
+
              <a href="Fig2_left">
                style="height: 350px; width: auto;" class="thumbimage">
+
                <img alt="SDS-PAGE-tetR-mScI" class="thumbimage"
            </a>
+
                  src="https://static.igem.wiki/teams/5237/wetlab-results/sds-page-tetr-msc-expression-01.svg"
 +
                  style="height: 350px; width: auto;" />
 +
              </a>
 +
            </div>
 +
            <div style="border:none;">
 +
              <a href="Fig2_right">
 +
                <img alt="SiSt_EMSA_tetR-quali" class="thumbimage"
 +
                  src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-tetr-quali.svg"
 +
                  style="height: 350px; width: auto;" />
 +
              </a>
 +
            </div>
 
           </div>
 
           </div>
           <div style="border:none;">
+
           <div class="thumbcaption" style="text-align: justify;">
             <a href="Fig2_right">
+
             <i><b>Figure 2: Expression and DNA Binding Analysis of tetR-mScarlet-I-His<sub>6</sub> Fusion
              <img alt="SiSt_EMSA_tetR-quali"
+
                 Protein.</b></i><br />
                 src="https://static.igem.wiki/teams/5237/wetlab-results/sist-emsa-tetr-quali.svg"
+
            <i>Left image: SDS-PAGE analysis of protein expression. Lane 1: raw lysate of E. coli expression culture
                style="height: 350px; width: auto;" class="thumbimage">
+
              after
             </a>
+
              sterile filtration; Lane 2: Flow through of first wash; Lane 3: Flow
 +
              through of second wash; Lane 4: Elution of purified protein.
 +
              The expected band size of the protein is 50 737.60 Da, highlighted with a red box on the gel.<br />
 +
              Right image: Qualitative electrophoretic mobility shift assay of TetR in two different buffer systems. 1
 +
              µM
 +
              protein and 0.5 µM DNA containing three TetR binding sites were equilibrated in different buffer systems
 +
              (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1
 +
              mM
 +
              EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). Bands were visualized by SYBR-safe staining after gel
 +
              electrophoresis
 +
             </i>
 
           </div>
 
           </div>
 
         </div>
 
         </div>
        <div class="thumbcaption" style="text-align: justify;">
+
      </div>
          <i><b>Figure 2: Expression and DNA binding analysis of tetR-mScarlet-I-His<sub>6</sub> fusion
+
      </p>
              protein.</i></b><br>
+
    </section>
          <i>Left image: SDS-PAGE analysis of protein expression. Lane 1: raw lysate of E. coli expression culture after
+
    <section id="4.2">
            steril-filtration; Lane 2: Flow through of first wash
+
      <h2>4.2 <i>In Silico</i> Characterization using DaVinci</h2>
            (10 bed volumes of NaP10 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 10 mM Imidazol)); Lane 3: Flow through
+
      <p>
            of
+
        We developed the <i>in silico</i> model <a href="https://2024.igem.wiki/heidelberg/model"
            second wash (10 bed volumes of NaP20 (Na<sub>2</sub>HPO<sub>4</sub>, 150 mM NaCl, 20 mM Imidazol)); Lane 4:
+
          target="_blank">DaVinci</a>
            Elution of purified protein. The expected band size of the protein is 50 737.60 Da, highlighted with a red box on the gel.<br>
+
        for rapid engineering
            Right image: Qualitative electrophoretic mobility shift assay of tetR in two different buffer systems. 1 µM
+
        and development of our PICasSO system.
            protein and 0.5 µM DNA containing three tetR binding sites were equilibrated in different buffer sytstems
+
        DaVinci acts as a digital twin to PICasSO, designed to understand the forces acting on our system,
            (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM
+
        refine experimental parameters, and find optimal connections between protein staples and target DNA.
             EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). Bands were visualized by SYBR-safe staining after gel electrophoresis
+
        We calibrated DaVinci with literature and our own experimental affinity data calculated from EMSA assays with
 +
        purified proteins
 +
        DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged
 +
        DNA
 +
        dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the
 +
        DNA-binding interaction.<br />
 +
        The structures shown in Figure 4 were predicted using the AlphaFold server and the protein-DNA interaction
 +
        further
 +
        analyzed with all atom dynamics simulations. The depicted structures show favorable DNA binding, and no apparent
 +
        problems with the fusion protein and DNA binding were detected.
 +
      </p>
 +
      <div class="thumb">
 +
        <div class="thumbinner" style="width:80%;">
 +
          <img alt="" class="thumbimage" src="https://static.igem.wiki/teams/5237/model/structure-figure-2-png.svg"
 +
             style="width: 99%;" />
 +
          <div class="thumbcaption">
 +
            <i><b>Figure 4: Representations of the Simple Staple constructs</b>
 +
              Proteins are shown in full color (top row) and by their predicted structural accuracy during DNA
 +
              interaction.
 +
              The linkers were selected based on their structural property providing maximal flexibility. All structures
 +
              were predicted using the AlphaFold server (Google DeepMind, 2024).</i>
 +
          </div>
 
         </div>
 
         </div>
 
       </div>
 
       </div>
     </div>
+
     </section>
 
   </section>
 
   </section>
   <section id=" 5">
+
   <section id="5">
 
     <h1>5. References</h1>
 
     <h1>5. References</h1>
     <p>Berens, C., & Hillen, W. (2004). Gene Regulation By Tetracyclines. In J. K. Setlow (Ed.), Genetic Engineering: Principles and Methods (pp. 255-277). Springer US. <a href="https://doi.org/10.1007/978-0-306-48573-2_13" target="_blank">10.1007/978-0-306-48573-2_13</a></p>
+
     <p>(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)</p>
     <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2|ihsbop|+Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260-280. <a href="https://doi.org/10.1006/jmbi.1994.0138" target="_blank">10.1006/jmbi.1994.0138</a></p>
+
     <p>Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., &amp; Saenger, W. (1995). The Complex Formed Between Tet
     <p>Saenger, W., Hinrichs, W., Orth, P., Schnappinger, D., & Hillen, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural & Molecular Biology, 7(3), 215-219. <a href="https://doi.org/10.1038/73324" target="_blank">10.1038/73324</a></p>
+
      Repressor
 +
      and Tetracycline-Mg<sup>2+</sup> Reveals Mechanism of Antibiotic Resistance. <em>Journal of Molecular Biology,
 +
        247</em>(2), 260–280. <a href="https://doi.org/10.1006/jmbi.1994.0138"
 +
        target="_blank">https://doi.org/10.1006/jmbi.1994.0138</a></p>
 +
     <p>Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., &amp; Hillen, W. (2003). Single-chain Tet
 +
      transregulators.
 +
      <em>Nucleic Acids Research, 31</em>(12), 3050–3056.
 +
    </p>
 +
    <p>Orth, P., Schnappinger, D., Hillen, W., Saenger, W., &amp; Hinrichs, W. (2000). Structural basis of gene
 +
      regulation
 +
      by the tetracycline inducible Tet repressor-operator system. <em>Nature Structural Biology, 7</em>(3), 215–219. <a
 +
        href="https://doi.org/10.1038/73324" target="_blank">https://doi.org/10.1038/73324</a></p>
 +
    <p>Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., &amp; Das, A. T. (2007).
 +
      Improved single-chain transactivators of the Tet-On gene expression system. <em>BMC Biotechnology, 7</em>, 6. <a
 +
        href="https://doi.org/10.1186/1472-6750-7-6" target="_blank">https://doi.org/10.1186/1472-6750-7-6</a></p>
 
   </section>
 
   </section>
 
</body>
 
</body>
  
 
</html>
 
</html>
===References===
 
Berens, C., & Hillen, W. (2004). Gene Regulation By Tetracyclines. In J. K. Setlow (Ed.), Genetic Engineering: Principles and Methods (pp. 255-277). Springer US. 10.1007/978-0-306-48573-2_13
 
 
Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2|ihsbop|+Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260-280. 10.1006/jmbi.1994.0138
 
 
Saenger, W., Hinrichs, W., Orth, P., Schnappinger, D., & Hillen, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural & Molecular Biology, 7(3), 215-219. 10.1038/73324
 

Latest revision as of 12:42, 2 October 2024


BBa_K5237005

Half staple: TetR

The Tetracycline Repressor (tetR) is a bacterial transcriptional regulator that binds the tetO operon. TetR can be readily fused with other DNA-binding proteins to form a functional staple for DNA-DNA proximity. We used this part as a component of our simple staple (BBa_K5237006), and also fused it to mNeonGreen as part of a FRET readout system (BBa_K5237007).



The PICasSO Toolbox
Figure 1: How our part collection can be used to engineer new staples


While synthetic biology has in the past focused on engineering the genomic sequence of organisms, the 3D spatial organization of DNA is well-known to be an important layer of information encoding in particular in eukaryotes, playing a crucial role in gene regulation and hence cell fate, disease development, evolution, and more. However, tools to precisely manipulate and control the genomic spatial architecture are limited, hampering the exploration of 3D genome engineering in synthetic biology. We - the iGEM Team Heidelberg 2024 - have developed PICasSO, a powerful molecular toolbox for rationally engineering genome 3D architectures in living cells, based on various DNA-binding proteins.

The PICasSO part collection offers a comprehensive, modular platform for precise manipulation and re-programming of DNA-DNA interactions using engineered "protein staples" in living cells. This enables researchers to recreate naturally occurring alterations of 3D genomic interactions, such as enhancer hijacking in cancer, or to design entirely new spatial architectures for artificial gene regulation and cell function control. Specifically, the fusion of two DNA binding proteins enables to artificially bring otherwise distant genomic loci into spatial proximity. To unlock the system's full potential, we introduce versatile chimeric CRISPR/Cas complexes, connected either at the protein or - in the case of CRISPR/Cas-based DNA binding moieties - the guide RNA level. These complexes are referred to as protein- or Cas staples, respectively. Beyond its versatility with regard to the staple constructs themselves, PICasSO includes robust assay systems to support the engineering, optimization, and testing of new staples in vitro and in vivo. Notably, the PICasSO toolbox was developed in a design-build-test-learn engineering cycle closely intertwining wet lab experiments and computational modeling and iterated several times, yielding a collection of well-functioning and -characterized parts.

At its heart, the PICasSO part collection consists of three categories.
(i) Our DNA-binding proteins include our finalized Cas staple experimentally validated using an artificial "enhancer hijacking" system as well as "half staples" that can be combined by scientists to compose entirely new Cas staples in the future. We also include our Simple staples comprised of particularly small, simple and robust DNA binding domains well-known to the synthetic biology community, which serve as controls for successful stapling and can be further engineered to create alternative, simpler, and more compact staples.
(ii) As functional elements, we list additional parts that enhance and expand the functionality of our Cas and Basic staples. These consist of staples dependent on cleavable peptide linkers targeted by cancer-specific proteases or inteins that allow condition-specific, dynamic stapling in vivo. We also include several engineered parts that enable the efficient delivery of PICasSO's constructs into target cells, including mammalian cells, with our new interkingdom conjugation system.
(iii) As the final category of our collection, we provide parts that underlie our custom readout systems. These include components of our established FRET-based proximity assay system, enabling users to confirm accurate stapling. Additionally, we offer a complementary, application-oriented testing system based on a luciferase reporter, which allows for straightforward experimental assessment of functional enhancer hijacking events in mammalian cells.

The following table gives a comprehensive overview of all parts in our PICasSO toolbox. The highlighted parts showed exceptional performance as described on our iGEM wiki and can serve as a reference. The other parts in the collection are versatile building blocks designed to provide future iGEMers with the flexibility to engineer their own custom Cas staples, enabling further optimization and innovation in the new field of 3D genome engineering.

Our part collection includes:

DNA-Binding Proteins: Modular building blocks for engineering of custom staples to mediate defined DNA-DNA interactions in vivo
BBa_K5237000 Fusion Guide RNA Entry Vector MbCas12a-SpCas9 Entry vector for simple fgRNA cloning via SapI
BBa_K5237001 Staple Subunit: dMbCas12a-Nucleoplasmin NLS Staple subunit that can be combined with crRNA or fgRNA and dSpCas9 to form a functional staple
BBa_K5237002 Staple Subunit: SV40 NLS-dSpCas9-SV40 NLS Staple subunit that can be combined with a sgRNA or fgRNA and dMbCas12a to form a functional staple
BBa_K5237003 Cas Staple: SV40 NLS-dMbCas12a-dSpCas9-Nucleoplasmin NLS Functional Cas staple that can be combined with sgRNA and crRNA or fgRNA to bring two DNA strands into close proximity
BBa_K5237004 Staple Subunit: Oct1-DBD Staple subunit that can be combined to form a functional staple, for example with TetR.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237005 Staple Subunit: TetR Staple subunit that can be combined to form a functional staple, for example with Oct1.
Can also be combined with a fluorescent protein as part of the FRET proximity assay
BBa_K5237006 Simple Staple: TetR-Oct1 Functional staple that can be used to bring two DNA strands in close proximity
BBa_K5237007 Staple Subunit: GCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237008 Staple Subunit: rGCN4 Staple subunit that can be combined to form a functional staple, for example with rGCN4
BBa_K5237009 Mini Staple: bGCN4 Assembled staple with minimal size that can be further engineered
Functional Elements: Protease-cleavable peptide linkers and inteins are used to control and modify staples for further optimization for custom applications
BBa_K5237010 Cathepsin B-cleavable Linker: GFLG Cathepsin B-cleavable peptide linker that can be used to combine two staple subunits to make responsive staples
BBa_K5237011 Cathepsin B Expression Cassette Expression cassette for the overexpression of cathepsin B
BBa_K5237012 Caged NpuN Intein A caged NpuN split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237013 Caged NpuC Intein A caged NpuC split intein fragment that undergoes protein trans-splicing after protease activation, which can be used to create functionalized staple subunits
BBa_K5237014 Fusion Guide RNA Processing Casette Processing cassette to produce multiple fgRNAs from one transcript, that can be used for multiplexed 3D genome reprogramming
BBa_K5237015 Intimin anti-EGFR Nanobody Interkingdom conjugation between bacteria and mammalian cells, as an alternative delivery tool for large constructs
BBa_K4643003 IncP Origin of Transfer Origin of transfer that can be cloned into the plasmid vector and used for conjugation as a means of delivery
Readout Systems: FRET and enhancer recruitment readout systems to rapidly assess successful DNA stapling in bacterial and mammalian cells
BBa_K5237016 FRET-Donor: mNeonGreen-Oct1 FRET donor-fluorophore fused to Oct1-DBD that binds to the Oct1 binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237017 FRET-Acceptor: TetR-mScarlet-I Acceptor part for the FRET assay binding the TetR binding cassette, which can be used to visualize DNA-DNA proximity
BBa_K5237018 Oct1 Binding Casette DNA sequence containing 12 Oct1 binding motifs, compatible with various assays such as the FRET proximity assay
BBa_K5237019 TetR Binding Cassette DNA sequence containing 12 Oct1 binding motifs, can be used for different assays such as the FRET proximity assay
BBa_K5237020 Cathepsin B-Cleavable Trans-Activator: NLS-Gal4-GFLG-VP64 Readout system that responds to protease activity, which was used to test cathepsin B-cleavable linker
BBa_K5237021 NLS-Gal4-VP64 Trans-activating enhancer, that can be used to simulate enhancer hijacking
BBa_K5237022 mCherry Expression Cassette: UAS, minimal Promoter, mCherry Readout system for enhancer binding, which was used to test cathepsin B-cleavable linker
BBa_K5237023 Oct1 - 5x UAS Binding Casette Oct1 and UAS binding cassette, that was used for the simulated enhancer hijacking assay
BBa_K5237024 TRE-minimal Promoter- Firefly Luciferase Contains firefly luciferase controlled by a minimal promoter, which was used as a luminescence readout for simulated enhancer hijacking

1. Sequence overview

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal SapI.rc site found at 466

2. Usage and Biology

The tetracycline repressor protein (tetR) is naturally present in gram-negative bacteria and is involved in the resistance mechanism against tetracycline (and derivatives). It tightly controls gene expression of tetA, which encodes an efflux pump responsible for removing tetracycline from the cell. TetR binds selectively to two palindromic recognition sequences (tetO>1,2) with high affinity. For DNA binding to occur TetR adopts a homodimeric structure and binds with two α-helix-turn-α-helix motifs (HTH) to two tandemly oriented tetO sequences. In the presence of tetracycline, TetR undergoes a conformational change, which prevents it from binding to DNA, thereby allowing gene expression (Orth et al. 2000; Kisker et al. 1995).
Due to its robust and highly regulatable DNA-binding properties, TetR has become a widely adopted tool in synthetic biology. Its ease of modification and ability to function in both prokaryotic and eukaryotic systems have made it an essential element in the development of gene regulation systems (Berens & Hillen, 2004).
Because of its well-characterized behavior, TetR was integrated into our design of a modular DNA-stapling system.

3. Assembly and Part Evolution

TetR was C-terminally fused to create a tetR-mScarlet-I-His6.

As part of developing a Förster Resonance Energy Transfer (FRET) assay, a modified version of TetR was created. Based on previous studies that successfully engineered single-chain TetR (scTetR) proteins with unaltered DNA binding, we genetically fused two TetR proteins together with a flexible (G4S)6 linker (Krueger et al. 2003; Zhou et al. 2007). Unfortunately, under the T7 promoter system we tested, the expression levels were insufficient for further experimental use. (More information can be found on our Wiki or the tetR-mScarlet-I composite part)

4. Results

4.1 Protein Expression and Mobility Shift Assay

The fusion protein was expressed from a T7 based expression plasmid and subsequently purified using metal affinity chromatography with Ni-NTA beads (Fig. 1, left). DNA binding affinity in two different buffer systems was estimated with an electrophoretic mobility shift assay (EMSA) (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl).

Figure 2: Expression and DNA Binding Analysis of tetR-mScarlet-I-His6 Fusion Protein.
Left image: SDS-PAGE analysis of protein expression. Lane 1: raw lysate of E. coli expression culture after sterile filtration; Lane 2: Flow through of first wash; Lane 3: Flow through of second wash; Lane 4: Elution of purified protein. The expected band size of the protein is 50 737.60 Da, highlighted with a red box on the gel.
Right image: Qualitative electrophoretic mobility shift assay of TetR in two different buffer systems. 1 µM protein and 0.5 µM DNA containing three TetR binding sites were equilibrated in different buffer systems (Binding buffer 1: 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2HPO4, 0.1 % (v/v) IGEPAL® CA-360, 1 mM EDTA; Binding buffer 2: 10 mM Tris, 50 mM KCl). Bands were visualized by SYBR-safe staining after gel electrophoresis

4.2 In Silico Characterization using DaVinci

We developed the in silico model DaVinci for rapid engineering and development of our PICasSO system. DaVinci acts as a digital twin to PICasSO, designed to understand the forces acting on our system, refine experimental parameters, and find optimal connections between protein staples and target DNA. We calibrated DaVinci with literature and our own experimental affinity data calculated from EMSA assays with purified proteins DaVinci is divided into three phases: static structure prediction, all-atom dynamics simulation, and long-ranged DNA dynamics simulation. We applied the first two to our parts, characterizing structure and dynamics of the DNA-binding interaction.
The structures shown in Figure 4 were predicted using the AlphaFold server and the protein-DNA interaction further analyzed with all atom dynamics simulations. The depicted structures show favorable DNA binding, and no apparent problems with the fusion protein and DNA binding were detected.

Figure 4: Representations of the Simple Staple constructs Proteins are shown in full color (top row) and by their predicted structural accuracy during DNA interaction. The linkers were selected based on their structural property providing maximal flexibility. All structures were predicted using the AlphaFold server (Google DeepMind, 2024).

5. References

(Kisker et al., 1995; Krueger et al., 2003; Orth et al., 2000; Zhou et al., 2007)

Kisker, C., Hinrichs, W., Tovar, K., Hillen, W., & Saenger, W. (1995). The Complex Formed Between Tet Repressor and Tetracycline-Mg2+ Reveals Mechanism of Antibiotic Resistance. Journal of Molecular Biology, 247(2), 260–280. https://doi.org/10.1006/jmbi.1994.0138

Krueger, C., Berens, C., Schmidt, A., Schnappinger, D., & Hillen, W. (2003). Single-chain Tet transregulators. Nucleic Acids Research, 31(12), 3050–3056.

Orth, P., Schnappinger, D., Hillen, W., Saenger, W., & Hinrichs, W. (2000). Structural basis of gene regulation by the tetracycline inducible Tet repressor-operator system. Nature Structural Biology, 7(3), 215–219. https://doi.org/10.1038/73324

Zhou, X., Symons, J., Hoppes, R., Krueger, C., Berens, C., Hillen, W., Berkhout, B., & Das, A. T. (2007). Improved single-chain transactivators of the Tet-On gene expression system. BMC Biotechnology, 7, 6. https://doi.org/10.1186/1472-6750-7-6