Difference between revisions of "Part:BBa K4438709"

 
 
(4 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<partinfo>BBa_K4438709 short</partinfo>
 
<partinfo>BBa_K4438709 short</partinfo>
  
P4G13_trigger_5_phi29 (BBa_K4438709) is single-stranded DNA having 26 nucleotides . Figure 1B) shows the secondary structure and minimum free energy.
+
P4G13_trigger_5_phi29 (<partinfo>BBa_K4438709</partinfo>) is single-stranded DNA having 26 nucleotides . Figure 1B) shows the secondary structure and minimum free energy.
 +
 
  
<!-- Add more about the biology of this part here
 
 
===Usage and Biology===
 
===Usage and Biology===
 +
The part P4G13_trigger_5_phi29 (<partinfo>BBa_K4438709</partinfo>) is complementary to the part P4G13_aptamer (<partinfo>BBa_K4438700</partinfo>) with few mismatches. It blocks the entire binding region of the progesterone aptamer [1]. Figure 1D) Shows the secondary structure of both parts hybridised at 37° Celsius. Progesterone binds with P4G13_aptamer (<partinfo>BBa_K4438700</partinfo>) with high affinity and displaces the P4G13_trigger_5_phi29 (<partinfo>BBa_K4438709</partinfo>) [2].
 +
This part has complete complementarity with part P4G13_Target_5 (<partinfo>BBa_K4438710</partinfo>) . Phi 29 DNA extension polymerase extends the template strand and in-vitro transcription of the duplex forms multiple broccoli light-up aptamers.
 +
Different levels of progesterone can be detected using all these three parts.
  
 +
[[File:T--IISER-Tirupati_India--Pg413_5.png]]
 
<!-- -->
 
<!-- -->
 
<span class='h3bb'>Sequence and Features</span>
 
<span class='h3bb'>Sequence and Features</span>
Line 17: Line 21:
 
<partinfo>BBa_K4438709 parameters</partinfo>
 
<partinfo>BBa_K4438709 parameters</partinfo>
 
<!-- -->
 
<!-- -->
 +
===References===
 +
Alhadrami, H. A., Chinnappan, R., Eissa, S., Rahamn, A. A., & Zourob, M. (2017). High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Analytical biochemistry, 525, 78-84.
 +
Contreras Jiménez, G., Eissa, S., Ng, A., Alhadrami, H., Zourob, M., & Siaj, M. (2015). Aptamer-based label-free impedimetric biosensor for detection of progesterone. Analytical chemistry, 87(2), 1075-1082.

Latest revision as of 13:24, 12 October 2022


P4G13_trigger_5_phi29

P4G13_trigger_5_phi29 (BBa_K4438709) is single-stranded DNA having 26 nucleotides . Figure 1B) shows the secondary structure and minimum free energy.


Usage and Biology

The part P4G13_trigger_5_phi29 (BBa_K4438709) is complementary to the part P4G13_aptamer (BBa_K4438700) with few mismatches. It blocks the entire binding region of the progesterone aptamer [1]. Figure 1D) Shows the secondary structure of both parts hybridised at 37° Celsius. Progesterone binds with P4G13_aptamer (BBa_K4438700) with high affinity and displaces the P4G13_trigger_5_phi29 (BBa_K4438709) [2]. This part has complete complementarity with part P4G13_Target_5 (BBa_K4438710) . Phi 29 DNA extension polymerase extends the template strand and in-vitro transcription of the duplex forms multiple broccoli light-up aptamers. Different levels of progesterone can be detected using all these three parts.

T--IISER-Tirupati India--Pg413 5.png Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

Alhadrami, H. A., Chinnappan, R., Eissa, S., Rahamn, A. A., & Zourob, M. (2017). High affinity truncated DNA aptamers for the development of fluorescence based progesterone biosensors. Analytical biochemistry, 525, 78-84. Contreras Jiménez, G., Eissa, S., Ng, A., Alhadrami, H., Zourob, M., & Siaj, M. (2015). Aptamer-based label-free impedimetric biosensor for detection of progesterone. Analytical chemistry, 87(2), 1075-1082.