Difference between revisions of "Part:BBa K5317011"

Line 2: Line 2:
 
__NOTOC__
 
__NOTOC__
 
<partinfo>BBa_K5317011 short</partinfo>
 
<partinfo>BBa_K5317011 short</partinfo>
 +
 +
===Usage and Biology===
  
 
The MRE-sites containing promoter enables the metal-dependent expression of a downstream positioned reporter gene via the metal ion-dependent transcription factor MTF-1 for cell-based metal detection.
 
The MRE-sites containing promoter enables the metal-dependent expression of a downstream positioned reporter gene via the metal ion-dependent transcription factor MTF-1 for cell-based metal detection.
Line 7: Line 9:
 
In order to integrate the findings of Searle and colleagues (1985) and Wang and colleagues (2004) regarding the metal inducibility of a promoter with two MREa sites and a high affinity between MREd and MTF-1, we designed a synthetic promoter with two MREa and two MREd sites that alternate. The aim is to enhance the sensitivity and efficiency of the metal-dependent promoter.
 
In order to integrate the findings of Searle and colleagues (1985) and Wang and colleagues (2004) regarding the metal inducibility of a promoter with two MREa sites and a high affinity between MREd and MTF-1, we designed a synthetic promoter with two MREa and two MREd sites that alternate. The aim is to enhance the sensitivity and efficiency of the metal-dependent promoter.
  
<!-- Add more about the biology of this part here
 
===Usage and Biology===
 
 
=Cloning=
 
=Cloning=
  

Revision as of 19:05, 14 September 2024


MREdada-EGFP

Usage and Biology

The MRE-sites containing promoter enables the metal-dependent expression of a downstream positioned reporter gene via the metal ion-dependent transcription factor MTF-1 for cell-based metal detection.

In order to integrate the findings of Searle and colleagues (1985) and Wang and colleagues (2004) regarding the metal inducibility of a promoter with two MREa sites and a high affinity between MREd and MTF-1, we designed a synthetic promoter with two MREa and two MREd sites that alternate. The aim is to enhance the sensitivity and efficiency of the metal-dependent promoter.

Cloning

Theoretical Part Design

Placing the MRE containing promoter upstream of the reporter gene EGFP allows the visualization of primarily metal-dependent activation of MTF-1.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]

Cloning

To test the MREdada promoter functionality the reporter gene EGFP (K3338006) was cloned downstream of the promoter by inserting the MREdada promoter into the AseI- and NheI-digested EGFP-C2 backbone (K3338020) using NEB Hifi Assembly.

HTML Table Caption Table1: Primers used to create matching overhangs on promoter amplicon to digested pEGFP-C2 backbone

Primer name Sequence
MREdada_fw CCGCCATGCATTAGTTATGCACACTGGCGCT
MREdada_rev TGGCGACCGGTAGCGGACGCTTAGAGGACAGC

The vector map of the assembled construct is shown in figure 1. Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]