Difference between revisions of "Part:BBa K2333431"

Line 7: Line 7:
 
===Usage and Biology===
 
===Usage and Biology===
  
This part contains pdt-D tagged Scarlet-I under aTc inducible promoter pTet combined on the same construct with the pTet repressor tetR under the control of the medium-weak strength constitutive promoter J23105. The mScarlet-I reporter is a monomeric red fluorescent protein with high quantum yield, brightness, and fold-time. See Bindels, et. al (2016). Protein degradation tag D is the fourth strongest of the 6 protein degradation tags that William and Mary 2017 characterized, and is associated with the E. Coli orthogonal protease mf-Lon (<partinfo>Bba_K2333011</partinfo>). The part also contains a double stop codon and <partinfo>Bba_B0015</partinfo> (double terminator) in the William and Mary iGEM Universal Nucleotide Sequences (UNS) format. This enables easy cloning with Gibson Assembly, as UNS primers are designed for easy PCRs and high yield Gibson Assembly. See Torella, et. al (2013). This part was used in William and Mary 2017's gene expression speed measurements, allowing them to control the initiation of mScarlet reporter expression using the small molecule aTc. In combination with the IPTG-inducible mf-Lon protease, this part was used by William and Mary 2017 to characterize the degradation properties of protein degradation tag D on a plasmid-based system. This is a part of the first experimentally-demonstrated system that allows future iGEM teams to access modular, predictive control over the temporal dynamics of their circuits by swapping parts at the genetic sequence level.
+
This part contains pdt-D tagged mScarlet-I under aTc inducible promoter pTet combined on the same construct with the pTet repressor tetR under the control of the medium-weak strength constitutive promoter J23105. The mScarlet-I reporter is a monomeric red fluorescent protein with high quantum yield, brightness, and fold-time. See Bindels, et. al (2016). Protein degradation tag D is the fourth strongest of the 6 protein degradation tags that William and Mary 2017 characterized, and is associated with the E. Coli orthogonal protease mf-Lon (<partinfo>Bba_K2333011</partinfo>). The part also contains a double stop codon and <partinfo>Bba_B0015</partinfo> (double terminator) in the William and Mary iGEM Universal Nucleotide Sequences (UNS) format. This enables easy cloning with Gibson Assembly, as UNS primers are designed for easy PCRs and high yield Gibson Assembly. See Torella, et. al (2013). This part was used in William and Mary 2017's gene expression speed measurements, allowing them to control the initiation of mScarlet reporter expression using the small molecule aTc. In combination with the IPTG-inducible mf-Lon protease, this part was used by William and Mary 2017 to characterize the degradation properties of protein degradation tag D on a plasmid-based system. This is a part of the first experimentally-demonstrated system that allows future iGEM teams to access modular, predictive control over the temporal dynamics of their circuits by swapping parts at the genetic sequence level.
  
 
<!-- -->
 
<!-- -->

Revision as of 22:12, 29 October 2017


UNS pTet mScarlet-I pdt D

This part is contained in a suite of protein degradation tagged mScarlet-I reporters under the control of the aTc-inducible pTet promoter combined with the pTet repressor tetR under the medium-weak strength constitutive promoter J23105. These parts were used along with the IPTG-inducible mf-Lon protease to demonstrate distinct levels of speed to steady state in reporter expression proportional to the relative strength of each pdt. William and Mary 2017 also took advantage of the inducible nature of these constructs by manipulating levels of aTc exposure in order to adjust final steady state values independently of speed control. This specific part contains pdt-D, one of the 6 pdt's characterized by William and Mary 2017, which was used to produce a distinct effect on the speed of a tagged protein’s expression.

Usage and Biology

This part contains pdt-D tagged mScarlet-I under aTc inducible promoter pTet combined on the same construct with the pTet repressor tetR under the control of the medium-weak strength constitutive promoter J23105. The mScarlet-I reporter is a monomeric red fluorescent protein with high quantum yield, brightness, and fold-time. See Bindels, et. al (2016). Protein degradation tag D is the fourth strongest of the 6 protein degradation tags that William and Mary 2017 characterized, and is associated with the E. Coli orthogonal protease mf-Lon (BBa_K2333011). The part also contains a double stop codon and BBa_B0015 (double terminator) in the William and Mary iGEM Universal Nucleotide Sequences (UNS) format. This enables easy cloning with Gibson Assembly, as UNS primers are designed for easy PCRs and high yield Gibson Assembly. See Torella, et. al (2013). This part was used in William and Mary 2017's gene expression speed measurements, allowing them to control the initiation of mScarlet reporter expression using the small molecule aTc. In combination with the IPTG-inducible mf-Lon protease, this part was used by William and Mary 2017 to characterize the degradation properties of protein degradation tag D on a plasmid-based system. This is a part of the first experimentally-demonstrated system that allows future iGEM teams to access modular, predictive control over the temporal dynamics of their circuits by swapping parts at the genetic sequence level.

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 1059
    Illegal NheI site found at 1082
    Illegal NotI site found at 632
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

[1] Bindels, D. S., Haarbosch, L., Weeren, L. V., Postma, M., Wiese, K. E., Mastop, M., . . . Gadella, T. W. (2016). MScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nature Methods, 14(1), 53-56. doi:10.1038/nmeth.4074

[2] Cameron DE, Collins JJ. Tunable protein degradation in bacteria. Nature Biotechnology. 2014;32(12):1276–1281.

[3] Torella JP, Boehm CR, Lienert F, Chen J-H, Way JC, Silver PA. Rapid construction of insulated genetic circuits via synthetic sequence-guided isothermal assembly. Nucleic Acids Research. 2013;42(1):681–689.