RNA

Part:BBa_K4245007

Designed by: Akshaya Poonepalle, Michelle Jing, Shivaek Venkateswaran, Daeun Lee, Sahana Ram Narayanan, Richard Jiang, Sishnukenav Balamurali, Christina Yi, Varnica Basavaraj, Manaswi Gorle, Ryan Du, Janet Standev   Group: iGEM22_Lambert_GA   (2022-09-21)


hsa-miR-122-5p

This part is the sequence for hsa-miR-122-5p, an miRNA isolated from Homo sapiens. This miRNA acts as a dysregulated biomarker for coronary artery disease (Kaur et al., 2020), and is therefore potentially useful for the early detection of this condition. More specifically, hsa-miR-122-5p, or miRNA-122-5p, is seen to be a marker of the atherosclerotic process or metabolic profile underlying atherosclerosis (Singh et al., 2020). Furthermore, our call with Dr. Searles confirmed that hsa-miR-122-5p is a suitable biomarker to measure the development of CAD. As such, utilizing miRNA-122-5p has the potential to track the progression of coronary artery disease, indicating how far atherosclerosis has developed within a patient.

The Lambert_GA 2022 team developed a set of padlock probes to use the rolling circle amplification approaches for several miRNAs related to CAD. This miRNA is used as the basis for BBa_K4245101 and BBa_K4245108, the 3' arm for hsa-miR-122-5p and 5' arm for hsa-miR-122-5p, and as the target sequence for BBa_K4245202, the hsa-miR-122-5p RCA Padlock Probe. .

When using rolling circle amplification (RCA), the miRNA binds to the padlock. A rolling circle product (RCP) is produced from BBa_K4245131 (Middle Sequence), which is then detected by the linear probes BBa_K4245130 (Fluorophore) and BBa_K4245132 (Quencher). When these parts bind to the RCP, the fluorescence decreases. Therefore, lower fluorescence is indicative of greater miRNA concentrations.

References:

Kaur, A., Mackin, S. T., Schlosser, K., Wong, F. L., Elharram, M., Delles, C., Stewart, D. J., Dayan, N., Landry, T., & Pilote, L. (2020). Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovascular research, 116(6), 1113–1124. https://doi.org/10.1093/cvr/cvz302
Singh, S., de Ronde, M., Kok, M., Beijk, M. A., De Winter, R. J., van der Wal, A. C., Sondermeijer, B. M., Meijers, J., Creemers, E. E., & Pinto-Sietsma, S. J. (2020). MiR-223-3p and miR-122-5p as circulating biomarkers for plaque instability. Open heart, 7(1), e001223. https://doi.org/10.1136/openhrt-2019-001223

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None