Coding

Part:BBa_K5406001:Design

Designed by: Kristian Verdhi, Eleni Krassa   Group: iGEM24_Athens   (2024-09-12)


Polyphosphatate kinase (PPK)


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 311
    Illegal PstI site found at 1708
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 311
    Illegal PstI site found at 1708
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BamHI site found at 2052
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 311
    Illegal PstI site found at 1708
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 311
    Illegal PstI site found at 1708
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

There were several design considerations: 1) Making sure the part was capable to be synthesized by Integrated DNA Technologies (IDT), 2) The part must be compatible with the Type IIS standard. That led to the removal of several restriction sites, 3) The part must contain the required codons so it was possible to express it in E.coli.


Source

Thermosynechococcus elongatus BP-1

References

1. Xing Zhang, Hui Wu, Bing Huang, Zhimin Li, Qin Ye, One-pot synthesis of glutathione by a two-enzyme cascade using a thermophilic ATP regeneration system, Journal of Biotechnology, Volume 241,2017, Pages 163-169, ISSN 0168-1656,

2. Masaru Sato, Yusuke Masuda, Kohtaro Kirimura, Kuniki Kino, Thermostable ATP regeneration system using polyphosphate kinase from Thermosynechococcus elongatus BP-1 for d-amino acid dipeptide synthesis, Journal of Bioscience and Bioengineering, Volume 103, Issue 2, 2007, Pages 179-184, ISSN 1389-1723,.

3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402.

4. Altschul, S. F., Wootton, J. C., Gertz, E. M., Agarwala, R., Morgulis, A., Schäffer, A. A., & Yu, Y.-K. (2005). Protein database searches using compositionally adjusted substitution matrices. FEBS Journal, 272(20), 5101-5109.

5. Haddad, Y., Adam, V., & Heger, Z. (2020). Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Computational Biology, 16(4), e1007449.

6. Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303.

7. Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., & Schwede, T. (2017). The SWISS-MODEL Repository: New features and functionality. Nucleic Acids Research, 45(D1), D313–D319.

8. Guex, N., Peitsch, M. C., & Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162–S173.

9. Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2020). QMEANDisCo: Distance constraints applied on model quality estimation. Bioinformatics, 36(6), 1765–1771.

10. Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., & Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7, 10480.

11. Vyas, V. K., Ukawala, R. D., Ghate, M., & Chintha, C. (2012). Homology modeling a fast tool for drug discovery: current perspectives. Indian Journal of Pharmaceutical Sciences, 74(1), 1–17.

12. The PyMOL Molecular Graphics System, Version 4.6 Schrödinger, LLC.

13. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., ... Velankar, S. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. doi: 10.1093/nar/gkab1061

14. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., ... Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. doi: 10.1038/s41586-021-03819-2

15. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., ... Velankar, S. (2023). AlphaFold Protein Structure Database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Research. Advance online publication. doi: 10.1093/nar/gkad1011

16. Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., ... Velankar, S. (2021). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. doi: 10.1093/nar/gkab1061

17. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In J. M. Walker (Ed.), *The proteomics protocols handbook* (pp. 571-607). Totowa, NJ: Humana Press.