Part:BBa_K5205006
ureB, urease subunit beta from Sporosarcina pasteurii DSM33
ureB encodes for a urease subunit beta in S. pasteurii DSM33, which is one of the three essential subunits (gamma, beta, and alpha) that together form the active urease enzyme complex (Moersdorf et al., 1994). This enzyme is crucial for catalyzing the hydrolysis of urea into ammonia and carbon dioxide, a key step in the process of microbially induced calcite precipitation (MICP).
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI.rc site found at 107
Usage and Biology
Microbiologically Induced Calcite Precipitation (MICP) involves hydrolyzing urea into ammonia and carbonate ions, raising pH to form calcium carbonate precipitates (Sarayu et al., 2014). This process can also precipitate heavy metals like cadmium and remove them from the water (Qasem et al., 2021). By introducing urease genes (ureB) from S. pasteurii into E. coli, E. coli can be engineered to be a heavy metal remover.
References
Moersdorf, G., Weinmann, P., & Kaltwasser, H. (1994). Nucleotide sequence of three genes on a urease encoding DNA-fragment from Bacillus pasteurii.
Pei, D., Liu, Z., & Hu, B. (2023). A novel urease gene structure of Sporosarcina pasteurii with double operons.
Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. npj Clean Water, 4(1), 36. https://doi.org/10.1038/s41545-021-00127-0
Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials--a review. Appl Biochem Biotechnol, 172(5), 2308-2323. https://doi.org/10.1007/s12010-013-0686-0
Wu, Y., Li, H., & Li, Y. (2021). Biomineralization Induced by Cells of Sporosarcina pasteurii: Mechanisms, Applications and Challenges. Microorganisms, 9(11). https://doi.org/10.3390/microorganisms9112396
None |