DNA

Part:BBa_K3912999:Design

Designed by: Guangtao Xu, Rundong Ye   Group: iGEM21_USTC   (2021-09-30)


AP


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


Design Notes

Source

Schizosaccharomyces pombe (fission yeast) DNA fragment M26

References

1. S. Ashley, S. Bradburn, C. Murgatroyd, A meta-analysis of peripheral tocopherol levels in age-related cognitive decline and Alzheimer's disease. Nutr Neurosci, 1-15 (2019). 2. T.G. Ohm, H. Müller, H. Braak, J. Bohl, Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer's disease-related neurofibrillary changes. Neuroscience 64, 209-217 (1995). 3. H. Zetterberg et al., Plasma tau levels in Alzheimer’s disease. Alzheimer s Research & Therapy. 5, (2013). 4. J. Simren, N. J. Ashton, K. Blennow, H. Zetterberg, An update on fluid biomarkers for neurodegenerative diseases: recent success and challenges ahead. Curr Opin Neurobiol 61, 29-39 (2020). 5. S. Janelidze et al., Plasma P-tau181 in Alzheimer's disease: relationship to other biomarkers, differential diagnosis, neuropathology and longitudinal progression to Alzheimer's dementia. Nat Med 26, 379-386 (2020). 6. D. Li, M. M. Mielke, An Update on Blood-Based Markers of Alzheimer's Disease Using the SiMoA Platform. Neurol Ther 8, 73-82 (2019). 7. K. R. Jacobs et al., Correlation between plasma and CSF concentrations of kynurenine pathway metabolites in Alzheimer's disease and relationship to amyloid-beta and tau. Neurobiol Aging 80, 11-20 (2019). 8. S. Fossati et al., Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer's disease. Alzheimers Dement (Amst) 11, 483-492 (2019). 9. B. Shui et al., Biosensors for Alzheimer's disease biomarker detection: A review. Biochimie 147, 13-24 (2018). 10. S. Lisi et al., Non-SELEX isolation of DNA aptamers for the homogeneous-phase fluorescence anisotropy sensing of tau Proteins. Anal Chim Acta 1038, 173-181 (2018). 11. S. M. Krylova et al., Tau protein binds single-stranded DNA sequence specifically--the proof obtained in vitro with non-equilibrium capillary electrophoresis of equilibrium mixtures. FEBS Lett 579, 1371-1375 (2005). 12. I. T. Teng et al., Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau Protein. J Am Chem Soc 140, 14314-14323 (2018). 13. O. Piepenburg, C. H. Williams, D. L. Stemple, N. A. Armes, DNA detection using recombination proteins. PLoS Biol 4, e204 (2006). 14. O. W. Stringer, J. M. Andrews, H. L. Greetham, M. S. Forrest, TwistAmp® Liquid: a versatile amplification method to replace PCR. Nature Methods 15, 395-395 (2018). 15. D. Tao et al., Development of a Label-Free Electrochemical Aptasensor for the Detection of Tau381 and its Preliminary Application in AD and Non-AD Patients' Sera. Biosensors (Basel) 9, (2019). 16. R. Gorkin et al., Centrifugal microfluidics for biomedical applications. Lab Chip 10, 1758-1773 (2010). 17. M. Amasia, M. Madou, Large-volume centrifugal microfluidic device for blood plasma separation. . Bioanalysis 2, 1701-1710 (2010). 18. J. Wu, X. Liu, L. Wang, L. Dong, Q. Pu, An economical fluorescence detector for lab-on-a-chip devices with a light emitting photodiode and a low-cost avalanche photodiode. Analyst 137, 519-525 (2012). 19. F. B. Yang, J. Z. Pan, T. Zhang, Q. Fang, A low-cost light-emitting diode induced fluorescence detector for capillary electrophoresis based on an orthogonal optical arrangement. Talanta 78, 1155-1158 (2009). 20. Citartan, Marimuthu; et al. (December 2011). "Asymmetric PCR for good quality ssDNA generation towards DNA aptamer production" (PDF). Songklanakarin J. Sci. Technol. 34 (2): 125–131.