Coding

Part:BBa_K3468024

Designed by: Yufei Zhou   Group: iGEM20_TJUSLS_China   (2020-10-18)

PETase S54W,A80V,T113P,T116R,Q119D,Q127L,S193R,S214F,K252L,R260F,T266P,N275P The PETase is an enzyme, which can hydrolyze PET and this mutation protein is changed on the basis of the PETase.This mutant is more stable in higher temperature compared with the wild type.

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal EcoRI site found at 240
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal EcoRI site found at 240
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal EcoRI site found at 240
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal EcoRI site found at 240
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal EcoRI site found at 240
  • 1000
    COMPATIBLE WITH RFC[1000]

Q127L prompts the hydrophobic packing in the protein interior The indolyl of S54W formed a offset parallel π-π stacking interaction with the phenolic group of the Y69. The phenyl group of R260F formed a offset parallel π-π stacking interaction with the phenyl group of F261. A80V prompts the hydrophobic packing in the protein interior. The substitution of proline for threonline in T113P mutation reduced the conformational entropy of the local loop region The substitution of proline for asparagine in N275P mutation reduced the conformational entropy of the local loop region The substitution of proline for threonline in T266P mutation reduced the conformational entropy of the local loop region For the Q119D mutation, the substitution of asparate for glutamine in Q119D , conferred new hydrogen bonds with the aminogroup of Ser121 and Ser122 The phenyl group of S214F formed a offset parallel π-π stacking interaction with the indolyl of the W185. K252L prompts the hydrophobic packing in the protein interior. For the T116R mutation, the substitution of arginine for threonine in T116R , conferred new hydrogen bonds with the aminogroup of D118 For the S193R mutation, the substitution of arginine for serine in S193R , conferred new hydrogen bonds with the carboxyl of A171 024.png

In order to select the mutants with the best thermostability,molecular dynamics (MD) simulation analyses were conducted.In our project, we use GROMACS, which is one of the most popular MD software packages for protein, lipid, and nucleic acid.  We conducted MD simulations, of wild type PETase (WT) and its eight progressively thermostable mutants , performed at 343K.The root mean square deviation (RMSD) ,the root mean square fluctuation(RMSF),radius of gyration(Rg),solvent accessible surface area(SASA),free-energy landscape and number of hydrogen bond analyses reproduced the correct trends in stability changes of the wild-type and mutated PETase. Here, we named it as number 178.


RNSD-178.png

Many previous studies suggested that proteins with lower RMSD values compared with the starting structure tend to be more thermostable during MD simulation. The RMSD of our mutant is lower than the wild-type, and the fluctuation amplitude is smaller, wh

RMSF-178.png

Mutants with lower RMSF values during MD simulation tend to be more thermostable. Except for mutant our , other RMSF plots are very similar with wild type PETase and are not indicative of stability at 343K. But the RMSF value of mutant our is significantly lower than that of wild type.

SAS-178.png

Protein folding is driven by hydrophobic effect and is temperature dependent . Under normal conditions, the hydrophilic residues are usually on the protein surface, while hydrophobic residues are generally buried inside the protein away from the aqueous environment . If protein denaturation occurs, the hydrophobic region will be exposed to the solvent.The SASA values of our mutant is lower than that of the wild-type, which indicates that our mutant is more stable than wild-type PETase at 343K.

H-178.png

The hydrogen bond is another important temperature-dependent interaction in maintaining the stability of protein.The higher number of intramolecular hydrogen bonds conferred mutants have higher resistant against heat denaturation. Except for mutant our and 12M, the number of intramolecular hydrogen bonds in other mutants are very similar with wild type PETase. In contrast, the higher number of intramolecular hydrogen bonds present in mutant our implies they have higher thermostability.

RG-178.png

The compactness of protein is another indicator to measure the stability of protein. The effect of temperature to the overall dimension of PETaes was gleaned from the Rg analysis. Overall, the Rg of our mutant remaines constant throughout the simulation which implies that the mutant structure is capable to maintain its original compactness as the temperature rises.


En-178.png

The mutant our shows the required flexibility at appropriate temperature ranges and maintain conformational stability at high temperature. It shows a deep and rugged free-energy landscape,which indicates mutant our has more possibilities to have higher thermostability. ich indicates that our mutant is more stable than wild-type PETase at 343K.


PETase S54W,T113P,T116R,Q119D,Q127L,Q182I,S193R,S214F,K252L,R260F,T266P,N275P.jpeg

The benzene ring is located in a gully between two aromatic residues TYR87 and TRP185. The distance of PI-PI bond is 4.6A between TRP185 and the benzene ring in part of the first MHET. The whole ligand just fits into the pocket and binds tightly. Three residues of Ser160, Asp206 and His237 formed a catalytic triplet, and ranging was performed: Y87:4.8A ;M161:4.9A; H237:4.5A.

Significance of molecular docking for mutant work: The molecular docking model can predict the binding mode and affinity of mutants and ligands, and promote the work of mutants by analyzing the result model.

[edit]
Categories
Parameters
None