Part:BBa_K3202057:Design
Xyls-Pc-Pm-TetR-RBS1-Bxb1-T500-T1/TE-MicCsRNA-sRNA Binding Site-PLtetO
- 10COMPATIBLE WITH RFC[10]
- 12INCOMPATIBLE WITH RFC[12]Illegal NheI site found at 999
Illegal NheI site found at 1022
Illegal NheI site found at 3131 - 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 930
Illegal BamHI site found at 2857
Illegal XhoI site found at 2770 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 208
Illegal NgoMIV site found at 2131
Illegal NgoMIV site found at 2218
Illegal AgeI site found at 3081 - 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1775
Illegal BsaI site found at 2023
Design Notes
N/A
Source
Synthesized
References
【1】LWOFF, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953)
【2】Campbell A. (2006) in The Bacteriophages, General aspects of lysogeny, ed Calendar R. (Oxford University Press, Oxford), 2nd edn, pp 66–73.
【3】Myers, C. J. Engineering Genetic Circuits. 306 (CRC Press, 2009)
【4】Campbell A. (1962) Episomes. Adv. Genet. 11:101–145.Web of Science
【5】Azaro M.A., Landy A. (2002) in Mobile DNA II, λ integrase and the λ Int family, eds Craig N.L., Craigie R., Gellert M., Lambowitz A.M. (ASM Press, Washington, DC), pp 118–148.
【6】Yueju Wang. Recombinase technology: applications and possibilities. Plant Cell Rep. 2011 Mar; 30(3): 267–285.
【7】Gretchen Meinke. Cre Recombinase and Other Tyrosine Recombinases. Chem. Rev., 2016, 116 (20), pp 12785–12820.
【8】Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75: 567—605
【9】Hsu P L, Ross W, Landy A. The λ-phage att site: functional limits and interaction with Int protein. Nature, 1980, 285: 85—91
【10】Abremski K, Gottesman S. Site-specific recombination: Xis-independent excisive recombination of bacteriophage λ. J Mol Biol, 1981, 153: 67—78
【11】Abremski K, Hoess R. Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol Chem, 1984, 259: 1509—1514
【12】Decapentaplegic and growth control in the developing Drosophila wing. Takuya Akiyama & Matthew C. Gibson. Nature 527, 375–378 (19 November 2015) doi:10.1038/nature15730
【13】Alexandra Pokhilko et al. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling. Nucleic Acids Research, pp. gkw616, 2016, ISSN 0305-1048.
【14】Nathaniel Roquet1, Ava P. Soleimany, Alyssa C. Ferris, Scott Aaronson, Timothy K. Lu. Synthetic recombinase-based state machines in living cells. Science 22 Jul 2016: Vol. 353, Issue 6297
【15】Piro Siuti, John Yazbek, Timothy K Lu. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology 31, 448–452 (2013)
【16】Benjamin H Weinberg et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nature Biotechnology 35, 453–462 (2017) doi:10.1038/nbt.3805
【17】Jesus Fernandez-Rodriguez,Lei Yang,Thomas E. Gorochowski,D. Benjamin Gordon,Christopher A. Voigt. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth. Biol., 2015, 4 (12), pp 1361–1372.
【18】Aiba H (2007) Mechanism of RNA silencing by Hfq-binding small RNAs. Current Opinion in Microbiology
【19】Anthony LC, Suzuki H, Filutowicz M (2004) Tightly regulated vectors for the cloning and expression of toxic genes. Journal of Microbiological Methods 58: 243-250
【20】Aparicio T, de Lorenzo V, Martínez-García E (2017) Broadening the SEVA Plasmid Repertoire to Facilitate Genomic Editing of Gram-Negative Bacteria. In Hydrocarbon and Lipid Microbiology Protocols: Genetic, Genomic and System Analyses of Pure Cultures
【21】McGenity TJ, Timmis KN, Nogales B (eds), pp 9-27. Berlin, Heidelberg: Springer Berlin Heidelberg Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S (2013) A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microbial cell factories
【22】Bervoets I, Charlier D (2019) Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology.
【23】Lopez-Walle B, Gauthier M, Chaillet N (2008) Principle of a submerged freeze gripper for micro-assembly. IEEE Trans Robotics 24(4):897–902
【24】Rakotondrabe M, Haddab Y, Lutz P (2009) Development, modelling and control of micro/nano positionning 2 dof stick-slip device, IEEE/ASME Trans. Mechatronics 14(6):733–745
【25】M. Rakotondrabe Y. Haddab and P. Lutz, "Design, development and experiments of a high stroke-precision 2DoF (linear-angular) microsystem" in Proc. 2006 IEEE Int. Conf. on Robotics and Automation: pp. 669 - 674.