Part:BBa_K2505004:Design
atipt4-IVS-IRES-log1-polyA
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21INCOMPATIBLE WITH RFC[21]Illegal BglII site found at 1193
Illegal XhoI site found at 2243
Illegal XhoI site found at 2255 - 23COMPATIBLE WITH RFC[23]
- 25INCOMPATIBLE WITH RFC[25]Illegal NgoMIV site found at 739
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 881
Design Notes
These two genes(atipt4 and log1) are derived from Arabidopsis thaliana and encode enzymes necessary for synthesizing iP (isopentenyladenine) in mammalian cells. iP is a kind of cytokinins that are signaling molecules (Phytohormones) in plants and play important roles in cell growth and differentiation. When these genes are introduced to human cells, EA.hy926, the cells produce iP heterologously. The DNA sequences of these genes are optimized for expressing in human cells considering the codon usage. AtIPT4 has the adenylate dimethylallyltransferase ([http://www.genome.jp/dbget-bin/www_bget?ec:2.5.1.112 [EC:2.5.1.112] ]: cytokinin synthase) activity and catalyzes the transfer of an isopentenyl group from dimethylallyl diphosphate (DMAPP) to ATP and ADP, producing cytokinin nucleotides. Note that cytokinin nucleotides are the immature form. LOG1 has the phosphoribohydrolase activity and converts inactive cytokinin nucleotides to the biologically active free-base forms.
IVS (intervining sequence) is one kind of introns and is important for increasing the mRNA stability in eukaryotic cells. IRES (internal ribosome entry site) is an RNA element that allows translation initiation in a cap-independent mannerThe term “polyA” indicates the polyadenylation signal that is important for the nuclear export, translation, and stability of mRNA.
The DNA sequences of these genes(atipt4 and log1) are optimized for expressing in human cells considering the codon usage.
Source
This gene was synthesized by IDT.
References
Kakimoto, T. (2001) Identification of plant cytokinin biosynthetic enzymes as dimethylallyl diphosphate:ATP/ADP isopentenyltransferases. Plant Cell Physiol. 42:677-85.
Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. and Mizuno, T. (2001) The Arabidopsis Sensor His-kinase, AHK4, Can Respond to Cytokinins. Plant Cell Physiol. 42: 107-113.
Spíchal, L., Rakova, N.Y., Riefler, M., Mizuno, T., Romanov, G.A.,Strnad, M. and Schmülling, T. (2004) Two Cytokinin Receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, Differ in their Ligand Specifity in a Bacterial Assay. Plant Cell Physiol. 45: 1299-1305.