Composite

Part:BBa_K1972014

Designed by: Shuli Liang   Group: iGEM16_SCUT-China_A   (2016-10-14)


dszBBAC with tac promoter and dszD with lac promotor induced by IPTG

We constructed another dszB gene with tac promoter and teminator just front DszBACD cassette. When IPTG is added to our system, DszABCD enzymes will be successful expressed and these four enzymes convert dibenzothiophene (DBT) undergoes through three successive oxidation steps and one a hydrolytic step to 2-hydroxybiphenyl (2HBP) by the 4s pathway.

Each single enzyme gene was synthesized by Generay with E.coli optimized and we constructed them together and suquencing comformed. the sequences can be found in NCBI (GenBank Accession number L37363.1)

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    INCOMPATIBLE WITH RFC[21]
    Illegal BglII site found at 4052
    Illegal XhoI site found at 5558
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 267
    Illegal NgoMIV site found at 1582
    Illegal NgoMIV site found at 3076
    Illegal AgeI site found at 1104
    Illegal AgeI site found at 2419
    Illegal AgeI site found at 3180
    Illegal AgeI site found at 3463
    Illegal AgeI site found at 4281
    Illegal AgeI site found at 5746
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI.rc site found at 864
    Illegal BsaI.rc site found at 2179


T--SCUT-China A--u26.png

Figure 1. Bio-circuit of BBa_K1972014:Final optimized with dszB copy number increased

T--SCUT-China A--u29.png

Figure 2. Bio-circuit of BBa_K1972008: dszB with tac promoter

Finally, we increased DszB copy number to gain higher efficiency of desulfurization (as shown in Figure 1). We also cultured the recombinant strain BL21-dszB (as shown in Figure 2), and add it (0.5 mgprotein/mL) to the recombinant strain BL21-dszBBACD (optimized)

T--SCUT-China A--u27.jpg

Figure 3. The desulfurization results of Recombinant strain BL21-dszBBACD (optimized) addition of cell extract from the recombinant strain BL21-dszB tested by HPLC The desulfurization efficiency of the recombinant strain BL21-dszBBACD (optimized) addition of cell extract from the recombinant strain BL21-dszB is further improved (as shown in Figure 3). To know our project working under real industrial condition, we used n-dodecane with DBT (final concentration is 1mM) to simulate oil and the ratio of organic mixture and water is 1:9, which was based on our mathematic modeling. We added induced bacteria into the mixed system at an initial A600 of 2.0. After the reaction of 6 hours, we took 1 ml sample which would be tested by HPLC (as shown in Figure 4). The result shows clearly the generation of 2-HBP which means success of our project. Because it’s only a pre-experiment that we didn’t use equipment such as ultrasonator, the result does not show a high-efficiency desulfurization. We will do 2L-system desulfurization experiment in the next step.

T--SCUT-China A--u28.jpg

Figure 4. The elements of oil phase and aqueous phase after 6h-reaction The result shows significant conclusions which will guide us in the next step: a.The elements of oil will nearly not be metabolized or absorbed by our engineered bacteria in oil-water phrases.

b.Our engineered bacteria can convert DBT into 2-HBP successfully in oil-water phrases.

c.Very little organic elements will be left in aqueous phase.


Reference

[1] Li MZ, Squires CH, Monticello DJ, Childs JD. Genetic analysis of the dsz promoter and associated regulatory regions of Rhodococcus erythropolis IGTS8[J].Journal of Bacteriology.1996,178(22):6409-18.

[2] Franchi E RF, Serbolisca L, et al. Vector development, isolation of new promoters and enhancement of the catalytic activity of the Dsz enzyme complex in Rhodococcus sp. strains[J]. Oil & gas science and technology, 2003, 58(4): 515-520.

[3] Abin-Fuentes A, Mohamed Mel S, Wang DI, Prather KL. Exploring the mechanism of biocatalyst inhibition in microbial desulfurization[J].Applied and environmental microbiology.2013,79(24):7807-17.

[4] Li Y, Li W, Gao H, Xing J, Liu H. Integration of flocculation and adsorptive immobilization of Pseudomonas delafieldii R-8 for diesel oil biodesulfurization[J].Journal of Chemical Technology & Biotechnology.2011,86(2):246-50.

[5] Li GQ, Ma T, Li SS, Li H, Liang FL, Liu RL. Improvement of dibenzothiophene desulfurization activity by removing the gene overlap in the dsz operon[J].Biosci Biotechnol Biochem.2007,71(4):849-54.

[6] Li GQ, Li SS, Zhang ML, Wang J, Zhu L, Liang FL, et al. Genetic rearrangement strategy for optimizing the dibenzothiophene biodesulfurization pathway in Rhodococcus erythropolis[J].Applied and environmental microbiology.2008,74(4):971-6.

[7] Hirasawa K, Ishii Y, Kobayashi M, Koizumi K, Maruhashi K. Improvememt of Desulfurization Activity in Rhodococcus erythropolis KA2-5-1 by Genetic Engineering[J].Bioscience, Biotechnology and Biochemistry.2014,65(2):239-46.

[8]Martínez I, Mohamed M E S, Rozas D, et al. Engineering synthetic bacterial consortia for enhanced desulfurization and revalorization of oil sulfur compounds[J]. Metabolic engineering, 2016, 35: 46-54.

[edit]
Categories
Parameters
None