Part:BBa_K115001:Design
RNA thermometer (ROSE)
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000COMPATIBLE WITH RFC[1000]
Design Notes
The secondary structure is important to the function of an RNA thermometer, but part of the secondary structure is destroyed by the introduction of the scar. We've tried to alter the sequence so that the predicted secondary structure is conserved. More information on the design of this part can be found [http://2008.igem.org/Team:TUDelft/Temperature_design here].
The figure shows the secondary structure of the wild type RNA thermometer, as predicted by RNAfold, on the left. On the right the predicted secondary structure of this part, after ligation to a protein coding part, is shown. Notice that the 3' prime including the scar and the start codon do not belong to this part. The light blue nucleotides show the mutations that were needed to regain the original secondary structure after introduction of the scar.
Source
This sequence is taken from the Bradirhizobium Japonicum ([http://www.ncbi.nlm.nih.gov/sites/entrez?Db=genome&Cmd=ShowDetailView&TermToSearch=272 NC_004463]) as the 5'UTR ROSE RNA thermometer of a heat shock protein.
References
- Saheli Chowdhury, Christophe Maris, Frédéric H-T Allain, and Franz Narberhaus. Molecular basis for temperature sensing by an RNA thermometer. The EMBO Journal, 25:2487–2497, 2006. [http://www.ncbi.nlm.nih.gov/pubmed/16710302 PMID:16710302]