Difference between revisions of "Part:BBa K3202032:Design"

 
Line 17: Line 17:
 
===References===
 
===References===
  
【1】 LWOFF, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953)
+
【1】LWOFF, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953)
 +
 
 
【2】Campbell A. (2006) in The Bacteriophages, General aspects of lysogeny, ed Calendar R. (Oxford University Press, Oxford), 2nd edn, pp 66–73.
 
【2】Campbell A. (2006) in The Bacteriophages, General aspects of lysogeny, ed Calendar R. (Oxford University Press, Oxford), 2nd edn, pp 66–73.
 +
 
【3】Myers, C. J. Engineering Genetic Circuits. 306 (CRC Press, 2009)
 
【3】Myers, C. J. Engineering Genetic Circuits. 306 (CRC Press, 2009)
 +
 +
【4】Campbell A. (1962) Episomes. Adv. Genet. 11:101–145.Web of Science
 +
 
【5】Azaro M.A., Landy A. (2002) in Mobile DNA II, λ integrase and the λ Int family, eds Craig N.L., Craigie R., Gellert M., Lambowitz A.M. (ASM Press, Washington, DC), pp 118–148.
 
【5】Azaro M.A., Landy A. (2002) in Mobile DNA II, λ integrase and the λ Int family, eds Craig N.L., Craigie R., Gellert M., Lambowitz A.M. (ASM Press, Washington, DC), pp 118–148.
 +
 
【6】Yueju Wang. Recombinase technology: applications and possibilities. Plant Cell Rep. 2011 Mar; 30(3): 267–285.
 
【6】Yueju Wang. Recombinase technology: applications and possibilities. Plant Cell Rep. 2011 Mar; 30(3): 267–285.
 +
 
【7】Gretchen Meinke. Cre Recombinase and Other Tyrosine Recombinases. Chem. Rev., 2016, 116 (20), pp 12785–12820.  
 
【7】Gretchen Meinke. Cre Recombinase and Other Tyrosine Recombinases. Chem. Rev., 2016, 116 (20), pp 12785–12820.  
 +
 
【8】Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75: 567—605
 
【8】Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75: 567—605
 +
 
【9】Hsu P L, Ross W, Landy A. The λ-phage att site: functional limits and interaction with Int protein. Nature, 1980, 285: 85—91
 
【9】Hsu P L, Ross W, Landy A. The λ-phage att site: functional limits and interaction with Int protein. Nature, 1980, 285: 85—91
 +
 
【10】Abremski K, Gottesman S. Site-specific recombination: Xis-independent excisive recombination of bacteriophage λ. J Mol Biol, 1981, 153: 67—78
 
【10】Abremski K, Gottesman S. Site-specific recombination: Xis-independent excisive recombination of bacteriophage λ. J Mol Biol, 1981, 153: 67—78
 +
 
【11】Abremski K, Hoess R. Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol Chem, 1984, 259: 1509—1514
 
【11】Abremski K, Hoess R. Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol Chem, 1984, 259: 1509—1514
 +
 
【12】Decapentaplegic and growth control in the developing Drosophila wing. Takuya Akiyama  & Matthew C. Gibson. Nature 527, 375–378 (19 November 2015) doi:10.1038/nature15730
 
【12】Decapentaplegic and growth control in the developing Drosophila wing. Takuya Akiyama  & Matthew C. Gibson. Nature 527, 375–378 (19 November 2015) doi:10.1038/nature15730
【13】Alexandra Pokhilko et al. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling. Nucleic Acids Research, pp. gkw616, 2016, ISSN 0305-1048.
+
 
 +
【13】Alexandra Pokhilko et al. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling. Nucleic Acids Research, pp. gkw616, 2016, ISSN  
 +
0305-1048.
 +
 
 
【14】Nathaniel Roquet1, Ava P. Soleimany, Alyssa C. Ferris, Scott Aaronson, Timothy K. Lu. Synthetic recombinase-based state machines in living cells. Science 22 Jul 2016: Vol. 353, Issue 6297
 
【14】Nathaniel Roquet1, Ava P. Soleimany, Alyssa C. Ferris, Scott Aaronson, Timothy K. Lu. Synthetic recombinase-based state machines in living cells. Science 22 Jul 2016: Vol. 353, Issue 6297
 +
 +
【15】Piro Siuti, John Yazbek, Timothy K Lu. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology 31, 448–452 (2013)
 +
 
【16】Benjamin H Weinberg et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nature Biotechnology 35, 453–462 (2017) doi:10.1038/nbt.3805
 
【16】Benjamin H Weinberg et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nature Biotechnology 35, 453–462 (2017) doi:10.1038/nbt.3805
 +
 
【17】Jesus Fernandez-Rodriguez,Lei Yang,Thomas E. Gorochowski,D. Benjamin Gordon,Christopher A. Voigt. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth. Biol., 2015, 4 (12), pp 1361–1372.
 
【17】Jesus Fernandez-Rodriguez,Lei Yang,Thomas E. Gorochowski,D. Benjamin Gordon,Christopher A. Voigt. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth. Biol., 2015, 4 (12), pp 1361–1372.

Latest revision as of 22:17, 20 October 2019


mRFP-Bxb1 attB-J23119 Promoter-Bxb1 attP-sfGFP


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal NheI site found at 856
    Illegal NheI site found at 879
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal NgoMIV site found at 795
    Illegal AgeI site found at 7
    Illegal AgeI site found at 119
  • 1000
    INCOMPATIBLE WITH RFC[1000]
    Illegal BsaI site found at 815
    Illegal BsaI.rc site found at 914
    Illegal SapI.rc site found at 1059


Design Notes

N/A


Source

Recombinase cds given by GENAS_China, synthesized

References

【1】LWOFF, A. Lysogeny. Bacteriol. Rev. 17, 269–337 (1953)

【2】Campbell A. (2006) in The Bacteriophages, General aspects of lysogeny, ed Calendar R. (Oxford University Press, Oxford), 2nd edn, pp 66–73.

【3】Myers, C. J. Engineering Genetic Circuits. 306 (CRC Press, 2009)

【4】Campbell A. (1962) Episomes. Adv. Genet. 11:101–145.Web of Science

【5】Azaro M.A., Landy A. (2002) in Mobile DNA II, λ integrase and the λ Int family, eds Craig N.L., Craigie R., Gellert M., Lambowitz A.M. (ASM Press, Washington, DC), pp 118–148.

【6】Yueju Wang. Recombinase technology: applications and possibilities. Plant Cell Rep. 2011 Mar; 30(3): 267–285.

【7】Gretchen Meinke. Cre Recombinase and Other Tyrosine Recombinases. Chem. Rev., 2016, 116 (20), pp 12785–12820.

【8】Grindley N D F, Whiteson K L, Rice P A. Mechanisms of site-specific recombination. Annu Rev Biochem, 2006, 75: 567—605

【9】Hsu P L, Ross W, Landy A. The λ-phage att site: functional limits and interaction with Int protein. Nature, 1980, 285: 85—91

【10】Abremski K, Gottesman S. Site-specific recombination: Xis-independent excisive recombination of bacteriophage λ. J Mol Biol, 1981, 153: 67—78

【11】Abremski K, Hoess R. Bacteriophage P1 site-specific recombination: purification and properties of the Cre recombinase protein. J Biol Chem, 1984, 259: 1509—1514

【12】Decapentaplegic and growth control in the developing Drosophila wing. Takuya Akiyama & Matthew C. Gibson. Nature 527, 375–378 (19 November 2015) doi:10.1038/nature15730

【13】Alexandra Pokhilko et al. The mechanism of ϕC31 integrase directionality: experimental analysis and computational modelling. Nucleic Acids Research, pp. gkw616, 2016, ISSN 0305-1048.

【14】Nathaniel Roquet1, Ava P. Soleimany, Alyssa C. Ferris, Scott Aaronson, Timothy K. Lu. Synthetic recombinase-based state machines in living cells. Science 22 Jul 2016: Vol. 353, Issue 6297

【15】Piro Siuti, John Yazbek, Timothy K Lu. Synthetic circuits integrating logic and memory in living cells. Nature Biotechnology 31, 448–452 (2013)

【16】Benjamin H Weinberg et al. Large-scale design of robust genetic circuits with multiple inputs and outputs for mammalian cells. Nature Biotechnology 35, 453–462 (2017) doi:10.1038/nbt.3805

【17】Jesus Fernandez-Rodriguez,Lei Yang,Thomas E. Gorochowski,D. Benjamin Gordon,Christopher A. Voigt. Memory and Combinatorial Logic Based on DNA Inversions: Dynamics and Evolutionary Stability. ACS Synth. Biol., 2015, 4 (12), pp 1361–1372.