Groningen2009/Arsenic.js
Revision as of 07:48, 19 October 2009 by Jaspervdg (Talk | contribs) (New page: arsenicModelMaxIter = 1000; function arsenicModelConstants() { // Prevents other scripts from overriding them. return { // Extra-cellular GlpFTfactor: 2, // relative amount of Gl...)
arsenicModelMaxIter = 1000; function arsenicModelConstants() { // Prevents other scripts from overriding them.
return { // Extra-cellular GlpFTfactor: 2, // relative amount of GlpF hasGlpFPlasmid: false, // set to true for experiments with GlpF on a plasmid // Intra-cellular ars1T: 1.6605e-9, ars2T: 0, pro: 0, // TODO: rename to proR proK: 0, // Promoters in front of ArsR fusion from Kostal2004 (handled completely analogously to MBPArsR) proM: 0, // Promoters in front of our ArsR fusion (with MBP) proF: 0, // Promoters in front of fMT // Reaction constants K1d: 6e-6, // ArsR-As KKd: 6e-6, // ArsR-As (ArsR fusion from Kostal2004) KMd: 6e-6, // MBPArsR-As KFd: 6e-6, // fMT-As nf: 3, // Hill coefficient for fMT + As K3d2: Math.pow(0.33e-6,2), // ArsR-ars v5: 3.1863e-6, // import K5: 27.718e-6, // import k8: 1e2, // export (unknown) K7: 1e-4, // export (unknown) tauB: 1800, // half-life of ArsB tauR: 6, // half-life of ArsR tauG: 6, // half-life of GV tauK: 960, // half-life of ArsR fusion of Kostal2004 tauM: 6, // half-life of MBP-ArsR tauF: 6, // half-life of fMT beta1: 100, // production rate of ArsR behind ars1 // TODO: Rename them all! beta3: 100, // production rate of ArsR behind pro beta4: 95, // production rate of ArsB behind ars1 beta5: 6.6, // production rate of GV behind ars2 betaK: 15.4, // production rate of ArsR fusion of Kostal2004 behind proK betaM: 26.6, // production rate of MBP-ArsR behind proM betaF: 200, // production rate of fMT behind proF // Volumes Vs: 1.1e-3, Vc: 0.0073e-3 };
}
// Returns an array with all the necessary variables initialized as if a solution with cells in equilibrium suddenly gets a shot of arsenic function arsenicModelInitialization(c,AsT) {
if (c.AsT!=undefined && AsT==undefined) AsT = c.AsT; // First determine equilibrium without arsenic var x = arsenicModelEquilibrium(c,0);
// Return equilibrium with added arsenic x.AsexT = AsT/c.Vs; return x;
}
// Computes gradient of the variables in the arsenic model function arsenicModelGradient(c,x) {
// Solve 0 = As(III)in (1 + ArsR/KRd + MBPArsRT/(KMd + As(III)in) // + nf fMTT As(III)in^(nf-1)/(KFdnf + As(III)in^nf) - As(III)inT // and 0 = ArsR (1 + Asin/KRd + 2 ArsR ars / KAd²) - ArsRT var arsT = c.ars1T+c.ars2T, KFdnf = Math.pow(c.KFd,c.nf); var Asinlow = 0, Asinhigh = x.AsinT, Asintol = x.AsinT*1e-6, Asinlownf, Asinhighnf; var ArsRlow = 0, ArsRhigh = x.ArsRT, ArsRtol = x.ArsRT*1e-6; var arslow = arsT/(1+Math.pow(ArsRhigh,2)/c.K3d2), arshigh = arsT, arstol = arsT*1e-6; for(var iter=1; iter<=arsenicModelMaxIter && (Asinhigh-Asinlow>Asintol || ArsRhigh-ArsRlow>ArsRtol || arshigh-arslow>arstol); iter++) { Asinlownf = Math.pow(Asinlow,c.nf-1); // It is not safe to divide out Asinlow/high, so we do c.nf-1 here Asinhighnf = Math.pow(Asinhigh,c.nf-1); Asinlow = x.AsinT/(1+ArsRhigh/c.K1d+x.MBPArsRT/(c.KMd+Asinlow)+x.KostalArsRT/(c.KKd+Asinlow) +c.nf*x.fMTT*Asinhighnf/(KFdnf+Asinlownf*Asinlow)); Asinhigh = x.AsinT/(1+ArsRlow/c.K1d+x.MBPArsRT/(c.KMd+Asinhigh)+x.KostalArsRT/(c.KKd+Asinhigh) +c.nf*x.fMTT*Asinlownf/(KFdnf+Asinhighnf*Asinhigh)); ArsRlow = x.ArsRT/(1+Asinhigh/c.K1d+2*arshigh*ArsRhigh/c.K3d2); ArsRhigh = x.ArsRT/(1+Asinlow/c.K1d+2*arslow*ArsRlow/c.K3d2); arslow = arsT*c.K3d2/(c.K3d2+Math.pow(ArsRhigh,2)); arshigh = arsT*c.K3d2/(c.K3d2+Math.pow(ArsRlow,2)); } //if (iter>15) alert(iter); var Asin = Asinlow + 0.5*(Asinhigh-Asinlow); var ArsR = ArsRlow + 0.5*(ArsRhigh-ArsRlow); //var ars = arslow + 0.5*(arshigh-arslow); /*alert('err='+[Asin*(1+ArsR/c.K1d+x.MBPArsRT/(c.KMd+Asin)+x.KostalArsRT/(c.KKd+Asin)) + c.nf*x.fMTT*Math.pow(Asin,c.nf)/(KFdnf+Math.pow(Asin,c.nf)) - x.AsinT, ArsR*(1+Asin/c.K1d+2*(c.ars1T+c.ars2T)*ArsR/c.K3d2) - x.ArsRT, ars*(c.K3d2+Math.pow(ArsRhigh,2))/c.K3d2 - arsT]);*/ /*alert('gradient, [Asin,ArsR,arsF]='+[Asin,ArsR,ars/arsT] +', [AsinT-Asin,ArsRT-(ArsR+2*(arsT-ars))]='+[x.AsinT-Asin,x.ArsRT-(ArsR+2*(arsT-ars))]);*/
var KostalArsR = x.KostalArsRT*c.KKd/(c.KKd+Asin); var MBPArsR = x.MBPArsRT*c.KMd/(c.KMd+Asin); var fMT = x.fMTT*c.KFd/(c.KFd+Asin); var ArsB = x.ArsBT*c.K7/(c.K7+Asin); var ArsBAs = x.ArsBT*Asin/(c.K7+Asin); var arsFraction = c.K3d2/(c.K3d2+Math.pow(ArsR,2)); var ars1 = c.ars1T*arsFraction; var ars2 = c.ars2T*arsFraction; var dAsinTdt = (c.hasGlpFPlasmid?c.GlpFTfactor:1)*c.v5*x.AsexT / (c.K5+x.AsexT) - c.k8*ArsBAs; var dArsRT = c.beta1*ars1 + c.beta3*c.pro - (Math.LN2/c.tauR)*ArsR;
return { // Extra-cellular AsexT: -(c.Vc/c.Vs)*dAsinTdt, // Intra-cellular ArsBT: c.beta4*ars1 - (Math.LN2/c.tauB)*ArsB, AsinT: dAsinTdt, ArsRT: dArsRT, KostalArsRT: c.betaK*c.proK - (Math.LN2/c.tauK)*KostalArsR, MBPArsRT: c.betaM*c.proM - (Math.LN2/c.tauM)*MBPArsR, fMTT: c.betaF*c.proF - (Math.LN2/c.tauF)*fMT, GV: c.beta5*ars2 - (Math.LN2/c.tauG)*x.GV, // Subcomponents (selected) '_ArsR': ArsR, '_Asin': Asin, '_arsF': arsFraction };
}
// Computes the equilibrium from constants function arsenicModelEquilibrium(c,AsT) {
if (c.AsT!=undefined && AsT==undefined) AsT = c.AsT;
// Solve 0 = (β1 ars1T + β3 pro) (τR/ln(2)) K3d² - K3d² ArsR + β3 (τR/ln(2)) pro ArsR² - ArsR³ var fArsR = function(ArsR) { return (c.beta1*c.ars1T + c.beta3*c.pro)*(c.tauR/Math.LN2)*c.K3d2 - c.K3d2*ArsR + c.beta3*(c.tauR/Math.LN2)*c.pro*Math.pow(ArsR,2) - Math.pow(ArsR,3); } var ArsRlow = 0, ArsRhigh = (c.beta1*c.ars1T + c.beta3*c.pro)*(c.tauR/Math.LN2); var ArsR = findSingleZero(fArsR,ArsRlow,ArsRhigh);
// Compute ArsB and GV var arsFraction = c.K3d2/(c.K3d2+Math.pow(ArsR,2)); var ArsB = c.beta4*(c.tauB/Math.LN2)*c.ars1T*arsFraction; var KostalArsR = c.betaK*(c.tauK/Math.LN2)*c.proK; var MBPArsR = c.betaM*(c.tauM/Math.LN2)*c.proM; var fMT = c.betaF*(c.tauF/Math.LN2)*c.proF; var GV = c.beta5*(c.tauB/Math.LN2)*c.ars2T*arsFraction;
// Determine intra-cellular concentration of As(III) if (c.K7*(c.hasGlpFPlasmid?c.GlpFTfactor:1)*c.v5==0) { var Asin = 0, AsinT = 0; } else if (c.k8*ArsB==0) { var AsinT = AsT/c.Vc; var fAsin = function(Asin) { return Asin*(1+ArsR/c.K1d+MBPArsR/c.KMd+KostalArsR/c.KKd) + c.nf*fMT*Math.pow(Asin/c.KFd,c.nf) - AsinT; }; var Asinlow = 0, Asinhigh = AsinT; var Asin = findSingleZero(fAsin,Asinlow,Asinhigh); } else { // By solving 0 = Vs K5 As(III)in / (K7 v5/(k8 ArsB) - As(III)in) // + Vc As(III)in (1 + ArsR/KRd + MBPArsR/KMd + fMTT As(III)in^(nf-1)/KFd^nf) // - As(III)T var fAsin = function(Asin) { return c.Vs*c.K5*Asin/(c.K7*(c.hasGlpFPlasmid?c.GlpFTfactor:1)*c.v5/(c.k8*ArsB) - Asin) + c.Vc*Asin*(1+ArsR/c.K1d+MBPArsR/c.KMd+KostalArsR/c.KKd) + c.Vc*c.nf*fMT*Math.pow(Asin/c.KFd,c.nf) - AsT; }; var Asinlow = 0, Asinhigh = Math.min(AsT/c.Vc,c.K7*(c.hasGlpFPlasmid?c.GlpFTfactor:1)*c.v5/(c.k8*ArsB)); var Asin = findSingleZero(fAsin,Asinlow,Asinhigh); var AsinT = Asin*(1+ArsR/c.K1d+MBPArsR/c.KMd+KostalArsR/c.KKd) + fMT*Math.pow(Asin/c.KFd,c.nf); }
var ArsRT = ArsR*(1.0+Asin/c.K1d+2*ArsR*arsFraction*(c.ars1T+c.ars2T)/c.K3d2); /*alert('equilibrium, [Asin,ArsR,arsF]='+[Asin,ArsR,arsFraction] +', [AsinT-Asin,ArsRT-(ArsR+2*(arsT-ars))]='+[AsinT-Asin,ArsRT-(ArsR+2*(c.ars1T+c.ars2T)*(1-arsFraction))]);*/ return { // Extra-cellular 'AsexT': (AsT-c.Vc*AsinT)/c.Vs, // Intra-cellular 'ArsBT': ArsB*(1.0+Asin/c.K7), 'AsinT': AsinT, 'ArsRT': ArsRT, 'KostalArsRT': KostalArsR*(1.0+Asin/c.KKd), 'MBPArsRT': MBPArsR*(1.0+Asin/c.KMd), 'fMTT': fMT*(1.0+Math.pow(Asin/c.KFd,c.nf)), 'GV': GV, // Subcomponents (selected) '_ArsR': ArsR, '_Asin': Asin, '_arsF': arsFraction };
}
// Assuming there is exactly one zero of f(x) for x in [low,high] this function will find it function findSingleZero(f,low,high,tol) {
if (tol===undefined) tol = 1e-6; var ylow = f(low); var yhigh = f(high); var x = (low+high)/2.0, y; for(var iter=1; iter<=arsenicModelMaxIter && (high-low)/x>tol; iter++) { y = f(x); if (y*ylow>0) { // Checking if y and ylow have the same sign low = x; ylow = y; } else { high = x; yhigh = y; } x = high - yhigh*(high-low)/(yhigh-ylow); // Secant method (roughly) if (isNaN(x)) x = low+0.5*(high-low); x = Math.min(Math.max(x,low+0.1*(high-low)),low+0.9*(high-low)); // Ensures convergence } return x;
}