Signalling

Part:BBa_K4452001

Designed by: iGEM22_Hopkins   Group: iGEM22_Hopkins   (2022-09-30)
Revision as of 05:09, 10 October 2022 by KalenClifton (Talk | contribs) (correct description)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


prFB Transit Peptide

This transit peptide was identified for implementing root magnetotropism by overexpressing ferritin in statoliths of columella cells in Arabidopsis thaliana. While no statolith import sequences have been validated, this transit peptide was selected as a candidate sequence for importing ferritin into statoliths.

Background

To restore directional root growth in microgravity, Hopkins iGEM 2022 proposed that the existing gravitropic mechanisms can be engineered to respond to an artificial cue. We set out to engineer roots to grow in the direction of magnetic field gradients: magnetotropism.

Plants sense gravity via statoliths—starch-laden organelles in root tip columella cells—which sediment due to their weight. Statolith sedimentation triggers changes in the efflux of auxin, a universal plant hormone that induces plant cell elongation. Polarized auxin accumulation along the upper and lower sides of roots causes differential elongation of cells, guiding root growth in the direction of gravity.

We predicted that filling statoliths with iron-loading proteins, like ferritin, would allow the statoliths to move in response to a magnetic gradient. For our project we designed a genetic construct that allows for ferritin to be overexpressed in Arabidopsis and imported into statoliths.

Biology

In addition to overexpressing ferritin in the correct cells, we need to import the ferritin into the correct intracellular compartments, i.e the statoliths.

Statoliths are starch-laden organelles in plant cells. The class of organelles in plants that are involved in food synthesis and storage are called plastids. The plastids that are responsible for food synthesis usually contain pigments. Chloroplasts are an example of plastids that are involved in food synthesis and they contain the green pigment chlorophyll.

Plastids without pigments are called leucoplasts. Leucoplasts are responsible for food storage and are renamed for the type of food they store. Leucoplasts that store starch are called amyloplasts, and thus, statoliths are a type of amyloplast.

Proteins that originate from nuclear transcripts must have a transit peptide (TP) sequence on their N terminus, which will bind to translocons on the plastid membrane after its initial translation. The rest of the protein will then be translated directly into the plastid. No validated statolith import sequences are known, so we selected sequences to test. We searched for papers that mentioned root amyloplast TPs, and searched the Gene Ontology (GO) Resource for proteins known to be in the statolith that had annotated TPs.

Candidate: prFB Transit Peptide

Chu et al. identified transit-peptide motifs that enhanced import of proteins into root leucoplasts. They found that the preprotein Fibrillin 1B (prFB) exhibited 50% import efficiency into leucoplasts in pea (Pisum sativum) roots, whereas for its closely related homolog prPGL35 (80% identical amino acid sequence; 52% identity transit-peptide sequences) import into leucoplasts was very limited.

Furthermore, to test if the prFB transit peptide contains motifs that can specifically confer high leucoplast import efficiency, Chu et al. engineered mutants in which they replaced regions of the prPGL35 transit peptide that differ from prFB with the corresponding prFB sequence. From these experiments, Chu et al. found two motifs of the prFB transit peptide that are sufficient to increase the leucoplast import efficiency of prPGL35 up to more than threefold [1].

Sequence and Features


Assembly Compatibility:
  • 10
    COMPATIBLE WITH RFC[10]
  • 12
    COMPATIBLE WITH RFC[12]
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    COMPATIBLE WITH RFC[23]
  • 25
    COMPATIBLE WITH RFC[25]
  • 1000
    COMPATIBLE WITH RFC[1000]


References

[1] Chiung-Chih Chu, Krishna Swamy, Hsou-min Li, Tissue-Specific Regulation of Plastid Protein Import via Transit-Peptide Motifs, The Plant Cell, Volume 32, Issue 4, April 2020, Pages 1204–1217, https://doi.org/10.1105/tpc.19.00702

[edit]
Categories
Parameters
None