Coding

Part:BBa_K3286138

Designed by: Cleo Bagchus   Group: iGEM19_Wageningen_UR   (2019-10-17)
Revision as of 23:58, 20 October 2021 by ZhangSongyuan (Talk | contribs)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)


flg22

Flg22 is a peptide consisting of 22 conserved amino acids at the N-terminus flaggelin of Pseudomonas syringae [Felix et al., 1999]. Flg22 is a well described Microbe Associated Molecular Pattern (MAMPs). If recognised, MAMPS trigger PAMP Triggered Immunity in plants. They have been shown to trigger disease resistance in plants. [Zipfel et al., 2004]. flg22 can be used to active an immune response in plants.

It is very hard to purify this peptide if recombinantly expressed in E. coli, due to the small size and the folding of this peptide.

Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal : For Cell and Molecular Biology, 18(3), 265–276. https://doi.org/10.1046/j.1365-313x.1999.00265.x Felix, G., Duran, J. D., Volko, S., & Boller, T. (1999). Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal : For Cell and Molecular Biology, 18(3), 265–276. https://doi.org/10.1046/j.1365-313x.1999.00265.x

Characterization and documentation by team 2021 UZurich

Seedling growth inhibition (SGI) assay was performed to characterize the immunogenicity of flg22 and elf18 (Part:BBa_K3989023) peptides on A. thaliana Col-0 seedlings. flg22 and elf18 trigger similar levels of plant immune responses, which is consistent with previous research (Figure 2).

Flg22vself18.png

Figure 1. Results of SGI assay comparing the immunogenicity of flg22 and elf18

Flg22 vs elf18 from paper.png

Figure 2. Immunogenicity of flg22 and elf18 (modified from Li et al., 2009)


The structural basis for plant's perception of flg22 by FLS2 and BAK1 has been solved, which might help to develop flg22 variants with higher immunogenicity for agricultural applications (Sun et al., 2013).

FLS2 BAK1 flg22.png

Figure 3. Structural basis for flg22-Induced activation of the Arabidopsis FLS2-BAK1 immune complex

Reference

Li, J., Zhao-Hui, C., Batoux, M., Nekrasov, V., Roux, M., Chinchilla, D., ... & Jones, J. D. (2009). Specific ER quality control components required for biogenesis of the plant innate immune receptor EFR. Proceedings of the National Academy of Sciences, 106(37), 15973-15978.

Sun, Y., Li, L., Macho, A. P., Han, Z., Hu, Z., Zipfel, C., ... & Chai, J. (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science, 342(6158), 624-628.

Sequence and Features


Assembly Compatibility:
  • 10
    INCOMPATIBLE WITH RFC[10]
    Illegal PstI site found at 58
  • 12
    INCOMPATIBLE WITH RFC[12]
    Illegal PstI site found at 58
  • 21
    COMPATIBLE WITH RFC[21]
  • 23
    INCOMPATIBLE WITH RFC[23]
    Illegal PstI site found at 58
  • 25
    INCOMPATIBLE WITH RFC[25]
    Illegal PstI site found at 58
    Illegal NgoMIV site found at 52
    Illegal AgeI site found at 16
  • 1000
    COMPATIBLE WITH RFC[1000]


[edit]
Categories
Parameters
None