Part:BBa_K2842680
Intein Monomer 1: RFP reporter flanked with orthogonal inteins
Intein Monomer 1 | |
---|---|
Function | Standardised blue-white screening |
Use in | E. coli cells |
Chassis Tested | DH5α cells, BL21* cells |
Abstraction Hierarchy | Composite Device |
Related Device | BBa_K2842690 |
RFC standard | RFC10,RFC12,RFC21,RFC23 & RFC25 compatible |
Backbone | pSB1C3 |
Submitted by | [http://2018.igem.org/Team:UCL UCL iGEM 2018] |
This gene encodes a novel split-intein flanked reporter device which enables the use of intein splicing for any protein of interest through SapI digestion. Intein Monomer 1 was created to work in conjunction with its complimentary composite part Intein Monomer 2 to construct a intein polymerisation system.
USAGE AND BIOLOGY
PROTEIN POLYMERISATION BY SPLIT INTEINS
Discovered in the late 1980s, inteins are naturally occurring protein segments attached to specific host proteins of unicellular organisms (Protein Engineering Handbook, 2009). Inteins contain both an N- and C-terminal domain, which can be split to allow either half to be bound to unique external proteins. Matching split inteins self-excise from their attached host protein in a trans-splicing reaction (depicted in Figure X), which allows for the ligation of the external proteins through a peptide bond.
Sequence and Features
- 10COMPATIBLE WITH RFC[10]
- 12COMPATIBLE WITH RFC[12]
- 21COMPATIBLE WITH RFC[21]
- 23COMPATIBLE WITH RFC[23]
- 25COMPATIBLE WITH RFC[25]
- 1000INCOMPATIBLE WITH RFC[1000]Illegal BsaI site found at 1165
Illegal BsaI.rc site found at 28
Illegal SapI site found at 903
Illegal SapI.rc site found at 213
Functional Parameters
Protein data table for BioBrick BBa_ automatically created by the BioBrick-AutoAnnotator version 1.0 | ||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Nucleotide sequence in RFC 10: (underlined part encodes the protein) GCTTCTACAAACGCGGCTTCTTCCAAAGAGACCTAATACGACTCACTATAGGGGTTGTGAGCGGATAACAACCCAAGACAAGGAGGAGTACCAATGATCAAG ... CGCTTGGCT TAAGTGACAGTTGAAAAGCGAAAAAAAAACCCCGCCCCTGACAGGGCGGGGTTTTTTTTGGTCTCAACGGACGACGCCGGTTACTACATTGA ORF from nucleotide position 94 to 1032 (excluding stop-codon) | ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid sequence: (RFC 25 scars in shown in bold, other sequence features underlined; both given below)
| ||||||||||||||||||||||||||||||||||||||||||||||
Sequence features: (with their position in the amino acid sequence, see the list of supported features)
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid composition:
| ||||||||||||||||||||||||||||||||||||||||||||||
Amino acid counting
| Biochemical parameters
| |||||||||||||||||||||||||||||||||||||||||||||
Plot for hydrophobicity, charge, predicted secondary structure, solvent accessability, transmembrane helices and disulfid bridges | ||||||||||||||||||||||||||||||||||||||||||||||
Codon usage
| ||||||||||||||||||||||||||||||||||||||||||||||
Alignments (obtained from PredictProtein.org) There were no alignments for this protein in the data base. The BLAST search was initialized and should be ready in a few hours. | ||||||||||||||||||||||||||||||||||||||||||||||
Predictions (obtained from PredictProtein.org) | ||||||||||||||||||||||||||||||||||||||||||||||
There were no predictions for this protein in the data base. The prediction was initialized and should be ready in a few hours. | ||||||||||||||||||||||||||||||||||||||||||||||
The BioBrick-AutoAnnotator was created by TU-Munich 2013 iGEM team. For more information please see the documentation. If you have any questions, comments or suggestions, please leave us a comment. |
References
-
None |